• Spine · Jul 1999

    Comparative Study

    Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis.

    • J C Leong, W W Lu, K D Luk, and E M Karlberg.
    • Department of Orthopaedic Surgery, University of Hong Kong, PR China.
    • Spine. 1999 Jul 1;24(13):1310-5.

    Study DesignThe lung function test by a Plethysmograph enabled calculations to be made of the total lung capacity and vital capacity. A Motion Analysis System (Elite, BTS Inc., Milano, Italy) was used to observe and record chest cage and spinal movements and as to correlate lung function with the chest cage and spine kinematics.ObjectivesTo determine the three-dimensional kinematics and the shape and size changes of the chest cage and thoracic spine motion during deep breathing in healthy and scoliotic individuals.Summary Of Background DataLateral flexion plus rotation of the involved vertebrae around a vertical axis causing a decrease in lung function is the main disfigurement of scoliosis. Reports show that even after spinal fusion, reduced vital capacity associated with an increased residual volume are detected. Factors such as angle of scoliosis, length of the spinal column involved, and duration of the deformity influence pulmonary function but do not significantly affect its reduction. Mechanical inefficiency during breathing has not been studied.MethodsThree-dimensional kinematics of the chest cage and spine during breathing were studied in 41 scoliotic patients and in 20 healthy individuals. Three-dimensional chest cage motions relative to the spine and thoracic spine motions relative to T12 were calculated. To examine stiffness of the spine, lateral bending angles were calculated. The lung function test, which including spirometry and lung subdivision, also was performed for the scoliotic patients.ResultsSignificant differences (P < 0.05) were found in the movements of the upper level of the chest cage in anteroposterior and vertical directions, ranging from 16.7 to 28.6 mm in healthy individuals and from 12.1 to 24.2 mm in scoliotic patients. The thoracic spine displayed two-dimensional movements posteriorly and vertically during breathing, whereas less movement was seen in scoliotic patients. In addition, overall the scoliotic spine showed signs of stiffness in lateral bending.ConclusionsThe range of movement of the chest cage and spine is more limited in the scoliotic cases. This overall stiffness of the chest cage and the spine may contribute to the mechanical inefficiency and impairment of pulmonary function found in scoliotic patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.