• Alzheimers Dement · Jan 2008

    Review

    Core candidate neurochemical and imaging biomarkers of Alzheimer's disease.

    • Harald Hampel, Katharina Bürger, Stefan J Teipel, Arun L W Bokde, Henrik Zetterberg, and Kaj Blennow.
    • School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Trinity Centre for Health Sciences, The Adelaide and Meath Hospital Incorporating The National Children's Hospital, Dublin, Ireland. harald.hampel@tcd.ie
    • Alzheimers Dement. 2008 Jan 1;4(1):38-48.

    BackgroundIn the earliest clinical stages of Alzheimer's disease (AD) when symptoms are mild, clinical diagnosis can be difficult. AD pathology most likely precedes symptoms. Biomarkers can serve as early diagnostic indicators or as markers of preclinical pathologic change. Candidate biomarkers derived from structural and functional neuroimaging and those measured in cerebrospinal fluid (CSF) and plasma show the greatest promise. Unbiased exploratory approaches, eg, proteomics or cortical thickness analysis, could yield novel biomarkers. The objective of this article was to review recent progress in selected imaging and neurochemical biomarkers for early diagnosis, classification, progression, and prediction of AD.MethodsWe performed a survey of recent research, focusing on core biomarker candidates in AD.ResultsA number of in vivo neurochemistry and neuroimaging techniques, which can reliably assess aspects of physiology, pathology, chemistry, and neuroanatomy, hold promise as biomarkers. These neurobiologic measures appear to relate closely to pathophysiologic, neuropathologic, and clinical data, such as hyperphosphorylation of tau, amyloid beta (Abeta) metabolism, lipid peroxidation, pattern and rate of atrophy, loss of neuronal integrity, functional and cognitive decline, as well as risk of future decline. Current advances in the neuroimaging of mediotemporal, neocortical, and subcortical areas of the brain of mild cognitive impairment (MCI) and AD subjects are presented. CSF levels of Abeta42, tau, and hyperphosphorylated tau protein (p-tau) can distinguish subjects with MCI who are likely to progress to AD. They also show preclinical alterations that predict later development of early AD symptoms. Studies on plasma Abeta are not entirely consistent, but recent findings suggest that decreased plasma Abeta42 relative to Abeta40 might increase the risk of AD. Increased production of Abeta in aging is suggested by elevation of BACE1 protein and enzyme activity in the brain and CSF of subjects with MCI. CSF tau and p-tau are increased in MCI as well and show predictive value. Other biomarkers might indicate components of a cascade initiated by Abeta, such as oxidative stress or inflammation. These merit further study in MCI and earlier.ConclusionsA number of neuroimaging candidate markers are promising, such as hippocampus and entorhinal cortex volumes, basal forebrain nuclei, cortical thickness, deformation-based and voxel-based morphometry, structural and effective connectivity by using diffusion tensor imaging, tractography, and functional magnetic resonance imaging. CSF Abeta42, BACE1, total tau, and p-tau are substantially altered in MCI and clinical AD. Other interesting novel marker candidates derived from blood are being currently proposed (phase I). Biomarker discovery through proteomic approaches requires further research. Large-scale international controlled multicenter trials (such as the U.S., European, Australian, and Japanese Alzheimer's Disease Neuroimaging Initiative and the German Dementia Network) are engaged in phase III development of the core feasible imaging and CSF biomarker candidates in AD. Biomarkers are in the process of implementation as primary outcome variables into regulatory guideline documents regarding study design and approval for compounds claiming disease modification.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.