• Journal of neurotrauma · Jul 1998

    Comparison of brain tissue oxygen tension to microdialysis-based measures of cerebral ischemia in fatally head-injured humans.

    • A B Valadka, J C Goodman, S P Gopinath, M Uzura, and C S Robertson.
    • Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA.
    • J. Neurotrauma. 1998 Jul 1;15(7):509-19.

    AbstractThis study investigated the relationship between brain tissue oxygen tension (PbtO2) and cerebral microdialysate concentrations of several compounds in five patients with refractory intracranial hypertension after severe head injury. The following substances were assayed: lactate and glucose; the excitatory amino acids glutamate and aspartate; and the cations potassium, calcium, and magnesium. Glucose concentrations did not correlate with PbtO2, but lactate increased as PbtO2 decreased. The lactate/glucose ratio exhibited a close relationship to PbtO2, increasing sharply only when oxygen tension reached zero. Although glucose and oxygen eventually reached very low levels and zero, respectively, in these fatally head-injured patients, the terminal decrease in PbtO2 slightly preceded that of glucose in four of the five patients. This time lag is the cause of the poor correlation between glucose and PbtO2. Glutamate and aspartate concentrations both demonstrated a close relationship to PbtO2, with sharp increases not occurring until PbtO2 was zero. Concentrations of these amino acids exhibited a similar pattern in response to decreasing glucose concentrations. Potassium concentrations began increasing at a PbtO2 of 35 mm Hg, which is not generally considered indicative of hypoxia. Sharper increases began occurring once PbtO2 dropped below 15 mm Hg, with a slight rise in the minimum potassium concentrations recorded at these low PbtO2 values. Calcium and magnesium concentrations did not vary in response to PbtO2. In summary, the most robust biochemical indicators of cerebral anoxia were elevations in the lactate/glucose ratio and in the concentrations of lactate and of the excitatory amino acids glutamate and aspartate. Furthermore, the fact that glucose concentrations continue to decrease for a short period after oxygen levels reach zero suggests that cells continue to utilize glucose anaerobically for such functions as maintenance of cellular integrity, with collapse of the cell membrane as evidenced by increases of extracellular glutamate and aspartate not occurring until both oxygen and glucose concentrations reach zero.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.