• Anesthesiology · Jul 2007

    Isoform-selective effects of isoflurane on voltage-gated Na+ channels.

    • Wei OuYang and Hugh C Hemmings.
    • Department of Anesthesiology, Weill Cornell Medical College, NY, NY 10021, USA.
    • Anesthesiology. 2007 Jul 1;107(1):91-8.

    BackgroundVoltage-gated Na channels modulate membrane excitability in excitable tissues. Inhibition of Na channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na channel isoforms expressed in excitable tissues.MethodsRat Nav1.2, Nav1.4, or Nav1.5 alpha subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage clamp recording. The effects of isoflurane on Na current activation, inactivation, and recovery from inactivation were analyzed.ResultsThe cardiac isoform Nav1.5 activated at more negative potentials (peak INa at -30 mV) than the neuronal Nav1.2 (0 mV) or skeletal muscle Nav1.4 (-10 mV) isoforms. Isoflurane reversibly inhibited all three isoforms in a concentration- and voltage-dependent manner at clinical concentrations (IC50 = 0.70, 0.61, and 0.45 mm, respectively, for Nav1.2, Nav1.4, and Nav1.5 from a physiologic holding potential of -70 mV). Inhibition was greater from a holding potential of -70 mV than from -100 mV, especially for Nav1.4 and Nav1.5. Isoflurane enhanced inactivation of all three isoforms due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation. Inhibition of Nav1.4 and Nav1.5 by isoflurane was attributed primarily to enhanced inactivation, whereas inhibition of Nav1.2, which had a more positive V1/2 of inactivation, was due primarily to tonic block.ConclusionsTwo principal mechanisms contribute to Na channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 approximately Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 approximately Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na channel isoforms to enhance anesthetic specificity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.