• Biomed Pap · Jun 2005

    Relation between pH and the strong ion difference (SID) in body fluids.

    • Otto Schück and Karel Matousovic.
    • Institute for Clinical and Experimental Medicine, Prague.
    • Biomed Pap. 2005 Jun 1;149(1):69-73.

    AbstractAcid-base balance evaluation according to the Henderson-Hasselbalch equation enable us to assess the contribution of respiratory (pCO2) and/or non-respiratory (metabolic, HCO3(-)) components to the acid-base balance status. A new approach to acid-base balance evaluation according to Stewart-Fencl, which is based on a detailed physical-chemical analysis of body fluids shows that metabolic acid-base balance disorders are characterized not only by [HCO3(-)]. According to this concept independent variables must be taken into an account. The abnormality of concentration of one or more of the independent variable(s) determines the pH of a solution. The independent variables are: 1. strong ion difference (SID); 2. total concentration of nonvolatile weak acids [A(tot)]; 3. in agreement with the Henderson-Hasselbalch concept also pCO2. Traditional evaluation of acid-base balance disorders is based on the pH of body fluids (though pH may be within normal range if several acid-base balance disturbances are present). In order to maintain this view and simultaneously to respect the Stewart-Fencl principle, we invented a new equation, which uses only the independent variables to define the pH of body fluids. This analysis shows that for a given value of pCO2, the pH of body fluids is determined by a difference between SID and [A(tot)-]. pH = 6.1 + log((SID - [A(tot)-])/(0.03pCO2)) or in itemized form: pH = 6.1 + log((([Na+] + [K+] + [Ca2+] + [Mg2+] - [Cl-] - [UA-]) - (k1[Alb] + k2[P(i)]))/(0.03 x pCO2)). Evaluation of the individual components of this equation enables us to detect, which of the independent variable (or a combination of independent variables) deviates from the normal range and therefore which one or ones is a cause of the acid-base balance disorder. At the end of this paper we give examples of a practical application of this equation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.