• J. Neurol. Neurosurg. Psychiatr. · Jun 2003

    Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury.

    • L A Steiner, J P Coles, M Czosnyka, P S Minhas, T D Fryer, F I Aigbirhio, J C Clark, P Smielewski, D A Chatfield, T Donovan, J D Pickard, and D K Menon.
    • Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. las30@cam.ac.uk
    • J. Neurol. Neurosurg. Psychiatr. 2003 Jun 1;74(6):765-70.

    BackgroundAfter head injury, impaired cerebrovascular autoregulation has been associated with abnormally high or low cerebral blood flow. The physiological relevance of cerebral blood flow levels is difficult to assess in these patients, whose cerebral metabolic rate for oxygen (CMRO(2)) is known to be abnormal. Investigation of these relations requires quantitative measures of cerebral blood flow and CMRO(2), to allow assessment of oxygen supply and demand relations.ObjectivesTo investigate the relation between dysautoregulation and global cerebral oxygen metabolism following head injury.MethodsUsing positron emission tomography, global cerebral blood flow, CMRO(2), and oxygen extraction fraction were determined in 22 patients who were investigated in 26 examinations on days 1 to 11 (mean (SD), 3.5 (2.3)) after head injury. Cerebrovascular pressure reactivity was assessed using a pressure reactivity index, calculated as the moving linear correlation coefficient between mean arterial blood pressure and intracranial pressure. Outcome was assessed six months after injury using the Glasgow outcome scale.ResultsLow CMRO(2) was associated with disturbed pressure reactivity (inverse function, R(2) = 0.21, p = 0.018) and there was a correlation between disturbed pressure reactivity and oxygen extraction fraction (quadratic function, R(2) = 0.55, p = 0.0001). There was no significant relation between pressure reactivity and cerebral blood flow. An unfavourable outcome was associated with disturbed pressure reactivity. There was no significant relation between outcome and CMRO(2) or oxygen extraction fraction.ConclusionsThere is a close relation between dysautoregulation and abnormal cerebral metabolism but not blood flow. Further studies are needed to determine whether metabolic dysfunction is a result of or a cause of disturbed pressure reactivity, and to establish if there is a relation between cerebral oxygen metabolism and outcome.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.