• Molecular pharmacology · Feb 1999

    Purine and pyrimidine nucleotides inhibit a noninactivating K+ current and depolarize adrenal cortical cells through a G protein-coupled receptor.

    • L Xu and J J Enyeart.
    • Department of Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, USA.
    • Mol. Pharmacol. 1999 Feb 1;55(2):364-76.

    AbstractBovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that sets the resting membrane potential and may mediate depolarization-dependent cortisol secretion. External ATP stimulates cortisol secretion through activation of a nucleotide receptor. In whole-cell patch clamp recordings from bovine AZF cells, we found that ATP selectively inhibited IAC K+ current by a maximum of 75.7 +/- 3% (n = 13) with a 50% inhibitory concentration of 1.3 microM. A rapidly inactivating A-type K+ current was not inhibited by ATP. Other nucleotides, including ADP and the pyrimidines UTP and UDP, also inhibited IAC, whereas 2-methylthio-ATP (2-MeSATP) and CTP were completely ineffective. The rank order of potency for six nucleotides was UTP = ADP > ATP > UDP > 2-MeSATP = CTP. At maximally effective concentrations, UTP, ADP, and UDP inhibited IAC current by 81.4 +/- 5.2% (n = 7), 70.7 +/- 7.2% (n = 4), and 65.2 +/- 7.9% (n = 5), respectively. Inhibition of IAC by external ATP was reduced from 71. 3 +/- 3.2% to 22.8 +/- 4.5% (n = 18) by substituting guanosine 5'-O-2-(thio) diphosphate for GTP in the patch pipette. Inhibition of IAC by external ATP (10 microM) was markedly suppressed (to 17.3 +/- 5.5%, n = 9) by the nonspecific protein kinase antagonist staurosporine (1 microM) and eliminated by substituting the nonhydrolyzable ATP analog 5-adenylyl-imidodiphosphate or UTP for ATP in the pipette. ATP-mediated inhibition of IAC was not altered by the kinase C antagonist calphostin C, the calmodulin inhibitory peptide, or by buffering the intracellular (pipette) Ca++ with 20 mM 1,2-bis-(2-aminophenoxy)ethane-N, N,N',N'-tetraacetic acid. In current clamp recordings, ATP and UTP (but not CTP) depolarized AZF cells at concentrations that inhibited IAC K+ current. These results demonstrate that bovine AZF cells express a nucleotide receptor with a P2Y3 agonist profile that is coupled to the inhibition of IAC K+ channels through a GTP-binding protein. The inhibition of IAC K+ current and associated membrane depolarization are the first cellular responses demonstrated to be mediated through this receptor. Nucleotide inhibition of IAC proceeds through a pathway that is independent of phospholipase C, but that requires ATP hydrolysis. The identification of a new signaling pathway in AZF cells, whereby activation of a nucleotide receptor is coupled to membrane depolarization through inhibition of a specific K+ channel, suggests a mechanism for ATP-stimulated corticosteroid secretion that depends on depolarization-dependent Ca++ entry. This may be a means of synchronizing the stress-induced secretion of corticosteroids and catecholamines from the adrenal gland.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.