• Adv Exp Med Biol · Jan 2007

    Review

    Hypoxic inhibition of alveolar fluid reabsorption.

    • Laura A Dada and Jacob I Sznajder.
    • Division of Pulmonary and Critical Care Medicine, Feinberg School ofMedicine, Northwestern University, Chicago, Illinois, USA. lauradada@northwestern.edu
    • Adv Exp Med Biol. 2007 Jan 1;618:159-68.

    AbstractAlveolar hypoxia occurs during ascent to high altitude and is also observed in patients with ARDS and acute hypoxemic respiratory failure, in which alveolar flooding is associated with a decrease in edema fluid clearance and increased mortality. The mechanisms that lead to the impairment of alveolar fluid clearance are not completely understood. Alveolar fluid reabsorption is accomplished mostly by active Na+ transport across the alveolar epithelium which creates an osmotic gradient responsible for the clearance of lung edema from the alveolar spaces. In vivo and in vitro hypoxia inhibits both the epithelial sodium channels, responsible for the apical sodium entry, and the basolateral Na,K-ATPase, responsible for Na+ extrusion. We have shown that acute hypoxia inhibits Na,K-ATPase function by promoting its endocytosis from the plasma membrane to intracellular compartments. This process is mediated by the generation of mitochondrial reactive oxygen species (ROS) as shown by pharmacological and genetic approaches. Hypoxia and ROS promote the PKC-zeta dependent phosphorylation of the Na,K-ATPase alpha subunit triggering its endocytosis in a clathrin-AP2 dependent process. The phosphorylation occurs at the Ser-18 in the alpha subunit N-terminus, and mutation of this serine prevents both the decrease in function and the endocytosis. More prolonged hypoxia causes the ubiquitination and degradation of Na,K-ATPase. Thus, methods that counterbalance the inhibition of edema clearance during hypoxia and improve the lung's ability to clear pulmonary edema are needed. As such, a better understanding of the mechanisms that increase Na,K-ATPase function, (i.e., activation of dopaminergic or adrenergic receptors, gene transfer) may lead to the development of therapeutic approaches to upregulate the Na-K-ATPase function and increase edema clearance.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.