• J. Neurosci. · Aug 2012

    Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury.

    • Shannon D Shields, Xiaoyang Cheng, Nurcan Uçeyler, Claudia Sommer, Sulayman D Dib-Hajj, and Stephen G Waxman.
    • Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
    • J. Neurosci. 2012 Aug 8;32(32):10819-32.

    AbstractMarked hypersensitivity to heat and mechanical (pressure) stimuli develop after a burn injury, but the neural mechanisms underlying these effects are poorly understood. In this study, we establish a new mouse model of focal second-degree burn injury to investigate the molecular and cellular basis for burn injury-induced pain. This model features robust injury-induced behavioral effects and tissue-specific altered cytokine profile, but absence of glial activation in spinal dorsal horn. Three voltage-gated sodium channels, Na(v)1.7, Na(v)1.8, and Na(v)1.9, are preferentially expressed in peripheral somatosensory neurons of the dorsal root ganglia (DRGs) and have been implicated in injury-induced neuronal hyperexcitability. Using knock-out mice, we provide evidence that Na(v)1.7 selectively contributes to burn-induced hypersensitivity to heat, but not mechanical, stimuli. After burn model injury, wild-type mice display increased sensitivity to heat stimuli, and a normally non-noxious warm stimulus induces activity-dependent Fos expression in spinal dorsal horn neurons. Strikingly, both effects are absent in Na(v)1.7 conditional knock-out (cKO) mice. Furthermore, burn injury increases density and shifts activation of tetrodotoxin-sensitive currents in a hyperpolarized direction, both pro-excitatory properties, in DRG neurons from wild-type but not Na(v)1.7 cKO mice. We propose that, in sensory neurons damaged by burn injury to the hindpaw, Na(v)1.7 currents contribute to the hyperexcitability of sensory neurons, their communication with postsynaptic spinal pain pathways, and behavioral thresholds to heat stimuli. Our results offer insights into the molecular and cellular mechanisms of modality-specific pain signaling, and suggest Na(v)1.7-blocking drugs may be effective in burn patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.