• J. Natl. Cancer Inst. · Jul 2011

    Lung cancer risk prediction: Prostate, Lung, Colorectal And Ovarian Cancer Screening Trial models and validation.

    • C Martin Tammemagi, Paul F Pinsky, Neil E Caporaso, Paul A Kvale, William G Hocking, Timothy R Church, Thomas L Riley, John Commins, Martin M Oken, Christine D Berg, and Philip C Prorok.
    • Department of Community Health Sciences, Brock University, 500 Glenridge Ave, St Catharines, ON, Canada. martin.tammemagi@brocku.ca
    • J. Natl. Cancer Inst. 2011 Jul 6;103(13):1058-68.

    IntroductionIdentification of individuals at high risk for lung cancer should be of value to individuals, patients, clinicians, and researchers. Existing prediction models have only modest capabilities to classify persons at risk accurately.MethodsProspective data from 70 962 control subjects in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) were used in models for the general population (model 1) and for a subcohort of ever-smokers (N = 38 254) (model 2). Both models included age, socioeconomic status (education), body mass index, family history of lung cancer, chronic obstructive pulmonary disease, recent chest x-ray, smoking status (never, former, or current), pack-years smoked, and smoking duration. Model 2 also included smoking quit-time (time in years since ever-smokers permanently quit smoking). External validation was performed with 44 223 PLCO intervention arm participants who completed a supplemental questionnaire and were subsequently followed. Known available risk factors were included in logistic regression models. Bootstrap optimism-corrected estimates of predictive performance were calculated (internal validation). Nonlinear relationships for age, pack-years smoked, smoking duration, and quit-time were modeled using restricted cubic splines. All reported P values are two-sided.ResultsDuring follow-up (median 9.2 years) of the control arm subjects, 1040 lung cancers occurred. During follow-up of the external validation sample (median 3.0 years), 213 lung cancers occurred. For models 1 and 2, bootstrap optimism-corrected receiver operator characteristic area under the curves were 0.857 and 0.805, and calibration slopes (model-predicted probabilities vs observed probabilities) were 0.987 and 0.979, respectively. In the external validation sample, models 1 and 2 had area under the curves of 0.841 and 0.784, respectively. These models had high discrimination in women, men, whites, and nonwhites.ConclusionThe PLCO lung cancer risk models demonstrate high discrimination and calibration.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…