• J Med Syst · Aug 2011

    Predicting arterial blood gas values from venous samples in patients with acute exacerbation chronic obstructive pulmonary disease using artificial neural network.

    • Mohammad Reza Raoufy, Parivash Eftekhari, Shahriar Gharibzadeh, and Mohammad Reza Masjedi.
    • Department of Physiology, Tarbiat Modares University, Tehran, Iran.
    • J Med Syst. 2011 Aug 1;35(4):483-8.

    AbstractArterial blood gas (ABG) has an important role in the clinical assessment of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Because of ABG complications, an alternative method is beneficial. We have trained and tested five artificial neural networks (ANNs) with venous blood gas (VBG) values (pH, PCO(2), HCO(3), PO(2), and O(2) saturation) as inputs, to predict ABG values in patients with AECOPD. Venous and arterial blood samples were collected from 132 patients. Using the data of 106 patients, the ANNs were trained and validated by back-propagation algorithm. Subsequently, data from the remainder 26 patients was used for testing the networks. The ability of ANNs to predict ABG values and to detect significant hypercarbia was assessed and the results were compared with a linear regression model. Our results indicate that the ANNs provide an accurate method for predicting ABG values from VBG values and detecting hypercarbia in AECOPD.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.