-
- R Baron and W Jänig.
- Klinik für Neurologie, Christian-Albrechts-Universität zu Kiel.
- Anaesthesist. 1998 Jan 1;47(1):4-23.
AbstractThe efferent sympathetic nervous system is organized into subsystems that innervate and regulate via separate peripheral sympathic pathways the different autonomic target organs. This review discusses mechanisms through which this efferent system may be causally involved in the generation of pain. Clinical pain syndromes in which this may be the case are "complex regional pain syndromes" (CRPS) type I (previously reflex sympathetic dystrophy) and type II (recently causalgia). The "sympathetically maintained pain" (SMP) is a symptom (and not a clinical entity) that can principally also be present in other pain syndromes. An explanatory hypothesis, which may explain the clinical phenomenology of CRPS (different types of pain, swelling, autonomic, motor and trophic changes) and the mechanisms involved, is described and discussed. This hypothesis consists of different components that either have been tested and verified experimentally or which are still hypothetical. The hypothesis consists of changes in the primary afferent (nociceptive and non-nociceptive) neurones (sensitization, ectopic impulse generation) and of the neurones in the spinal cord (preferentially in the dorsal horn) which are secondary consequences of the changes in the primary afferent neurones ("central sensitization"). These changes are not specific for SMP. The centerpiece of the hypothesis is a positive feedback circuit that consists of the primary afferent neurones, spinal cord neurones, sympathic neurones and the pathologic sympathetic-afferent coupling. This coupling can occur directly via noradrenaline (or possibly another substance) at different sites of the afferent neurone (at the lesion site, remote from the lesion site in the periphery and in the spinal ganglion). The direct coupling requires that the afferent neurone expresses adrenoceptors. Indirect coupling can occur via the vascular bed or otherwise, e.g. by changes of the neurovascular transmission. The activity in the sympathetic neurones to the affected extremity can change. This change does not consist of a generalized increase of sympathetic activity but of a change of the reflexes (e.g., thermoregulatory and nociceptive reflexes). From this follows that the pathophysiologal processes operating in CRPS may occur at four levels of integration that interact with each other: effector organ, peripheral afferent and sympathetic neurone, spinal cord, supraspinal centres. Recent experimental investigations on rats show that the sympathetic nervous system is possibly also causally involved in the generation of inflammation and inflammatory pain. The mechanisms by which this occurs are different from those operating in SMP during CRPS.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.