• Int. J. Infect. Dis. · Nov 2007

    The medical management of central nervous system infections in Uganda and the potential impact of an algorithm-based approach to improve outcomes.

    • Joel D Trachtenberg, Andrew D Kambugu, Mehri McKellar, Fred Semitala, Harriet Mayanja-Kizza, Matthew H Samore, Allan Ronald, and Merle A Sande.
    • Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84124, USA. jtrachtenberg99@hotmail.com
    • Int. J. Infect. Dis. 2007 Nov 1;11(6):524-30.

    BackgroundIn sub-Saharan Africa, HIV has increased the spectrum of central nervous system (CNS) infections. The etiological diagnosis is often difficult. Mortality from CNS infections is higher in sub-Saharan Africa compared to Western countries. This study examines the medical management of CNS infections in Uganda. We also propose a clinical algorithm to manage CNS infections in an effective, systematic, and resource-efficient manner.MethodsWe prospectively followed 100 consecutive adult patients who were admitted to Mulago Hospital with a suspected diagnosis of a CNS infection without any active participation in their management. From the clinical and outcome data, we created an algorithm to manage CNS infections, which was appropriate for this resource-limited, high HIV prevalence setting.ResultsOnly 32 patients had a laboratory confirmed diagnosis and 23 of these were diagnosed with cryptococcal meningitis. Overall mortality was 39%, and mortality trended upward when the diagnosis was delayed past 3 days. The initial diagnoses were made clinically without significant laboratory data in 92 of the 100 patients. Because HIV positive patients have a unique spectrum of CNS infections, we created an algorithm that identified HIV-positive patients and diagnosed those with cryptococcal meningitis. After cryptococcal infection was ruled out, previously published algorithms were used to assist in the early diagnosis and treatment of bacterial meningitis, tuberculous meningitis, and other common central nervous system infections. In retrospective comparison with current management, the CNS algorithm reduced overall time to diagnosis and initiate treatment of cryptococcal meningitis from 3.5 days to less than 1 day.ConclusionsCNS infections are complex and difficult to diagnose and treat in Uganda, and are associated with high in-hospital mortality. A clinical algorithm may significantly decrease the time to diagnose and treat CNS infections in a resource-limited setting.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.