• Crit Care · Jan 2007

    Optimizing intensive care capacity using individual length-of-stay prediction models.

    • Mark Van Houdenhoven, Duy-Tien Nguyen, Marinus J Eijkemans, Ewout W Steyerberg, Hugo W Tilanus, Diederik Gommers, Gerhard Wullink, Jan Bakker, and Geert Kazemier.
    • Department of Operating Rooms, Erasmus University Medical Center, P,O, Box 2040, 3000 CA Rotterdam, The Netherlands. m.van.houdenhoven@rivas.nl
    • Crit Care. 2007 Jan 1;11(2):R42.

    IntroductionEffective planning of elective surgical procedures requiring postoperative intensive care is important in preventing cancellations and empty intensive care unit (ICU) beds. To improve planning, we constructed, validated and tested three models designed to predict length of stay (LOS) in the ICU in individual patients.MethodsRetrospective data were collected from 518 consecutive patients who underwent oesophagectomy with reconstruction for carcinoma between January 1997 and April 2005. Three multivariable linear regression models for LOS, namely preoperative, postoperative and intra-ICU, were constructed using these data. Internal validation was assessed using bootstrap sampling in order to obtain validated estimates of the explained variance (r2). To determine the potential gain of the best performing model in day-to-day clinical practice, prospective data from a second cohort of 65 consecutive patients undergoing oesophagectomy between May 2005 and April 2006 were used in the model, and the predictive performance of the model was compared with prediction based on mean LOS.ResultsThe intra-ICU model had an r2 of 45% after internal validation. Important prognostic variables for LOS included greater patient age, comorbidity, type of surgical approach, intraoperative respiratory minute volume and complications occurring within 72 hours in the ICU. The potential gain of the best model in day-to-day clinical practice was determined relative to mean LOS. Use of the model reduced the deficit number (underestimation) of ICU days by 65 and increased the excess number (overestimation) of ICU days by 23 for the cohort of 65 patients. A conservative analysis conducted in the second, prospective cohort of patients revealed that 7% more oesophagectomies could have been accommodated, and 15% of cancelled procedures could have been prevented.ConclusionPatient characteristics can be used to create models that will help in predicting LOS in the ICU. This will result in more efficient use of ICU beds and fewer cancellations.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.