• Anesthesiology · Nov 1996

    Effects of isoflurane and desflurane on neurogenic motor- and somatosensory-evoked potential monitoring for scoliosis surgery.

    • J M Bernard, Y Péréon, G Fayet, and P Guihéneuc.
    • Département d'Anesthésie-Réanimation Chirurgicale, Hôtel-Dieu, Nantes, France.
    • Anesthesiology. 1996 Nov 1;85(5):1013-9.

    BackgroundMost techniques used to monitor spinal cord tracts are sensitive to the effects of anesthesia, particularly to volatile anesthetic agents. The aim of this prospective study was to show that evoked potentials recorded from the peripheral nerves after spinal cord stimulation, so-called neurogenic motor evoked potentials, are resistant to clinical concentrations of isoflurane or desflurane, compared with somatosensory-evoked potentials.MethodsTwenty-three patients were studied during surgery to correct scoliosis. The background anesthetic consisted of a continuous infusion of propofol. Isoflurane (n = 12) or desflurane (n = 11) were then introduced to achieve 0.5 and 1.0 end-tidal minimum alveolar concentrations (MAC), both in 50% oxygen-nitrous oxide and in 100% oxygen. Somatosensory-evoked potentials were elicited and recorded using a standard method, defining cortical P40 and subcortical P29. Neurogenic motor-evoked potentials were elicited by electric stimulation of the spinal cord via needle electrodes placed by the surgeon in the rostral part of the surgical field. Responses were recorded from needle electrodes inserted in the right and left popliteal spaces close to the sciatic nerve. Stimulus intensity was adjusted to produce a supramaximal response; that is, an unchanged response in amplitude with subsequent increases in stimulus intensity. Measurements were obtained before introducing volatile agents and 20 min after obtaining a stable level of each concentration.ResultsIsoflurane and desflurane in both 50% oxygen-nitrous oxide and 100% oxygen were associated with a significant decrease in the amplitude and an increase in the latency of the cortical P40, whereas subcortical P29 latency did not vary significantly. Typical neurogenic motor-evoked potentials were obtained in all patients without volatile anesthetic agents, consisting of a biphasic wave, occurring 15 to 18 ms after stimulation, with an amplitude ranging from 1.3 to 4.1 microV. Latency or peak-to-peak amplitude of this wave was not significantly altered with isoflurane and desflurane, either in the presence or in the absence of nitrous oxide.ConclusionsCompared with cortical somatosensory-evoked potentials, neurogenic motor-evoked potential signals are well preserved in patients undergoing surgery to correct scoliosis under general anesthesia supplemented with isoflurane or desflurane in concentrations as great as 1 MAC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.