• Spine J · Jul 2011

    A comparison of biomechanical stability and pullout strength of two C1-C2 fixation constructs.

    • Jason W Savage, Worawat Limthongkul, Hyung-Soon Park, Li-Qun Zhang, and Eldin E Karaikovic.
    • Department of Orthopaedic Surgery, Northwestern University, Chicago, IL 60611, USA. jason.w.savage@gmail.com
    • Spine J. 2011 Jul 1;11(7):654-8.

    Background ContextSeveral fusion techniques are used to treat atlantoaxial instability. Recent literature suggests that intralaminar screw (LS) fixation and pedicle screw (PS) fixation offer similar stability and comparable pullout strength. No studies have compared these characteristics after cyclic loading.PurposeTo compare the stability and pullout strength of intra-LSs and PSs in a C1-C2 instability model after 1,000 cycles of axial loading.Study DesignIn vitro biomechanical study.Outcome MeasuresStability in axial rotation and screw pullout strength after cyclic loading.MethodsSix fresh-frozen human cadaveric cervical spines (C1-C2) were used in this study. C1-C2 instability was mimicked via odontoidotomy at its base and posterior soft-tissue release, including the supraspinous ligaments and facet joint capsules. Specimens were tested to 1,000 cycles after stabilization with two fixation constructs: C1 lateral mass (LM) screws and C2 intra-LSs (C1LM-C2LS) and C1 LM screws and C2 PSs (C1LM-C2PS). Angular motion was recorded for right and left axial rotation using an Optotrak 3020 system (Northern Digital, Waterloo, Ontario, Canada). Tensile loading to failure was then performed collinear to the longitudinal axis of the screw, and the data were recorded as peak pullout strength in newtons.ResultsThere was no statistically significant difference in stability (measured in degrees of rotation) between the intra-LS and PS constructs at 250, 500, 750, and 1,000 cycles of axial rotation. Furthermore, there was no significant difference in stability at 250 cycles versus 1,000 cycles for the LS (1.30 vs. 1.49, p = .80) or PS (0.84 vs. 0.85, p = .96). Pedicle screws had higher pullout strength when compared with the intra-LSs (757.5 ± 239 vs. 583.4 ± 472 N); however, high standard deviation precluded statistical significance (p = .44).ConclusionsOur data suggest that a C1LM and C2LS construct has similar biomechanical stability when compared with a C1LM and C2PS construct after 1,000 cycles of axial rotation. Furthermore, PSs had higher pullout strength when compared with LSs; however, this result was not statistically significant.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…