-
Anesthesia and analgesia · Mar 2008
Comparative StudyMolecular actions of propofol on human 5-HT3A receptors: enhancement as well as inhibition by closely related phenol derivatives.
- Martin Barann, Isabelle Linden, Stefan Witten, and Bernd W Urban.
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany. martin.barann@ukb.uni-bonn.de
- Anesth. Analg. 2008 Mar 1;106(3):846-57, table of contents.
Background5-Hydroxytryptamine type 3 (5-HT3) receptors are excitatory ligand-gated ion channels which are involved in postoperative nausea and vomiting. They are depressed by the anesthetic propofol, which, in contrast, enhances the activity of inhibitory ligand-gated ion channels such as gamma-aminobutyric acid type A receptors and glycine receptors. To investigate the molecular mechanisms responsible for these contrasting actions, we examined the kinetics of the action of propofol and its lesser hydrophobic derivatives 2-isopropylphenol and phenol on human 5-HT3A receptors.MethodsHuman embryonic kidney 293 cells containing stably transfected cDNA of the human 5-HT3A receptor subunit were patch clamped (excised outside-out patches). Drugs were applied with a fast solution exchange system (within 2 ms) and their concentrations were determined by high performance liquid chromatography.ResultsWhen applied in equilibrium (60 s before and during the 5-HT pulse), propofol inhibited human 5-HT3A receptors (IC50 = 18 +/- 1.0 microM). In equilibrium, the less hydrophobic 2-isopropylphenol was surprisingly a similarly potent inhibitor of human 5-HT3A receptors (IC50 = 17 +/- 3.2 microM), whereas phenol was considerably less potent (IC50 = 1.6 +/- 0.2 mM). Varying the duration of drug application before currents were elicited, and then applying 5-HT still in the presence of the drug revealed that fast and slow processes contributed to the (equilibrium) effects of propofol (tau(IN-1) = 35 ms and tau(IN-2) = 4.8 s), 2-isopropylphenol (tau(IN-1) = 64 ms and tau(IN-2) = 6.6 s), and phenol (tau(IN-1) < 10 ms, tau(IN-2) = 20.4 s). When applied transiently together with 5-HT (open channel application), propofol depressed currents and accelerated the 5-HT-induced desensitization significantly, whereas, in contrast, 2-isopropylphenol and phenol increased currents and slowed desensitization. Slowed desensitization was also observed for 5-hydroxyindole (1 mM), a 5-HT derivative, but not for benzene. The fast effects of phenol, 2-isopropylphenol, and propofol were more pronounced when the 5-HT concentration was decreased from 30 to 3 microM, whereas the slow effects were not sensitive to 5-HT.ConclusionsAt least two separate inhibitory actions on 5-HT3A receptors could be identified for propofol, whereas the enhancing action seen for the two related smaller phenol derivatives could no longer be detected. 5-HT-dependent and 5-HT-independent interactions could be distinguished for all three drugs. Propofol was less potent than expected from its hydrophobic properties. Underlying mechanisms appear to involve the phenolic hydroxyl group, hydrophobic interactions, and steric restrictions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.