• Respiratory care · May 2014

    Randomized Controlled Trial

    Expiratory Rib Cage Compression, Secretion Clearance and Respiratory Mechanics in Mechanically Ventilated Patients: A Randomized Crossover Trial.

    • Fernando S Guimarães, Agnaldo J Lopes, Sandra S Constantino, Juan C Lima, Paulo Canuto, and Sara Lucia Silveira de Menezes.
    • Rehabilitation Sciences Master's Program, Augusto Motta University Center, Rio de Janeiro, Brazil.
    • Respir Care. 2014 May 1;59(5):678-85.

    BackgroundExpiratory rib cage compression (ERCC) has been empirically used by physiotherapists with the rationale of improving expiratory flows and therefore the airway clearance in mechanically ventilated patients. This study evaluates the acute mechanical effects and sputum clearance of an ERCC protocol in ventilated patients with pulmonary infection.MethodsIn a randomized crossover study, sputum production and respiratory mechanics were evaluated in 20 mechanically ventilated subjects submitted to 2 interventions. ERCC intervention consisted of a series of manual bilateral ERCCs, followed by a hyperinflation maneuver. Control intervention (CTRL) followed the same sequence, but instead of the compressive maneuver, the subjects were kept on normal ventilation. Static (Cst) and effective (C(eff)) compliance and total (R(tot)) and initial (R(init)) resistance of the respiratory system were measured pre-ERCC (baseline), post-ERCC or CTRL (POST1), and post-hyperinflation (POST2). Peak expiratory flow (PEF) and the flow at 30% of the expiratory tidal volume (flow 30% VT) were measured during the maneuver.ResultsERCC cleared 34.4% more secretions than CTRL (1 [0.5-1.95] vs 2 [1-3.25], P < .01). Respiratory mechanics showed no differences between control and experimental intervention in POST1 for Cst, Ceff, R(tot), and R(init). In POST2, ERCC promoted an increase in Cst (38.7 ± 10.3 vs 42.2 ± 12 mL/cm H2O, P = .03) and in C(eff) (32.6 ± 9.1 vs 34.8 ± 9.4 mL/cm H2O, P = .04). During ERCC, PEF increased by 16.2 L/min (P < .001), and flow 30% VT increased by 25.3 L/min (P < .001) compared with CTRL. Six subjects (30%) presented expiratory flow limitation (EFL) during ERCC. The effect size was small for secretion volume (0.2), Cst (0.15), and C(eff) (0.12) and negligible for R(tot) (0.04) and R(init) (0.04).ConclusionsAlthough ERCC increases expiratory flow, it has no clinically relevant effects from improving the sputum production and respiratory mechanics in hypersecretive mechanically ventilated patients. The maneuver can cause EFL in some patients. (ClinicalTrials.gov registration NCT01525121).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…