-
- Shannon Haymond, Rohit Cariappa, Charles S Eby, and Mitchell G Scott.
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA.
- Clin. Chem. 2005 Feb 1;51(2):434-44.
BackgroundThis case conference reviews laboratory methods for assessing oxygenation status: arterial blood gases, pulse oximetry, and CO-oximetry. Caveats of these measurements are discussed in the context of two methemoglobinemia cases.CasesCase 1 is a woman who presented with increased shortness of breath, productive cough, chest pain, nausea, fever, and cyanosis. CO-oximetry indicated a carboxyhemoglobin (COHb) fraction of 24.9%. She was unresponsive to O(2) therapy, and no source of carbon monoxide could be noted. Case 2 is a man who presented with syncope, chest tightness, and signs of cyanosis. His arterial blood was dark brown, and CO-oximetry showed a methemoglobin (MetHb) fraction of 23%.IssuesOxygen saturation (So(2)) can be measured by three approaches that are often used interchangeably, although the measured systems are quite different. Pulse oximetry is a noninvasive, spectrophotometric method to determine arterial oxygen saturation (S(a)O(2)). CO-oximetry is a more complex and reliable method that measures the concentration of hemoglobin derivatives in the blood from which various quantities such as hemoglobin derivative fractions, total hemoglobin, and saturation are calculated. Blood gas instruments calculate the estimated O(2) saturation from empirical equations using pH and Po(2) values. In most patients, the results from these methods will be virtually identical, but in cases of increased dyshemoglobin fractions, including methemoglobinemia, it is crucial that the distinctions and limitations of these methods be understood.ConclusionsSo(2) calculated from pH and Po(2) should be interpreted with caution as the algorithms used assume normal O(2) affinity, normal 2,3-diphosphoglycerate concentrations, and no dyshemoglobins or hemoglobinopathies. CO-oximeter reports should include the dyshemoglobin fractions in addition to the oxyhemoglobin fraction. In cases of increased MetHb fraction, pulse oximeter values trend toward 85%, underestimating the actual oxygen saturation. Hemoglobin M variants may yield normal MetHb and increased COHb or sulfhemoglobin fractions measured by CO-oximetry.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.