• Biochemical pharmacology · Apr 2007

    The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders.

    • R Parmentier, C Anaclet, C Guhennec, E Brousseau, D Bricout, T Giboulot, D Bozyczko-Coyne, K Spiegel, H Ohtsu, M Williams, and J S Lin.
    • INSERM-U628, Department of Experimental Medicine, Faculty of Medicine, Claude Bernard University, 69373 Lyon, France.
    • Biochem. Pharmacol. 2007 Apr 15;73(8):1157-71.

    AbstractBrain histaminergic neurons play a prominent role in arousal and maintenance of wakefulness (W). H(3)-receptors control the activity of histaminergic neurons through presynaptic autoinhibition. The role of H(3)-receptor antagonists/inverse agonists (H(3)R-antagonists) in the potential therapy of vigilance deficiency and sleep-wake disorders were studied by assessing their effects on the mouse cortical EEG and sleep-wake cycle in comparison to modafinil and classical psychostimulants. The H(3)R-antagonists, thioperamide and ciproxifan increased W and cortical EEG fast rhythms and, like modafinil, but unlike amphetamine and caffeine, their waking effects were not accompanied by sleep rebound. Conversely, imetit (H(3)R-agonist) enhanced slow wave sleep and dose-dependently attenuated ciproxifan-induced W, indicating that the effects of both ligands involve H(3)-receptor mechanisms. Additional studies using knockout (KO) mice confirmed the essential role of H(3)-receptors and histamine-mediated transmission in the wake properties of H(3)R-antagonists. Thus ciproxifan produced no increase in W in either histidine-decarboxylase (HDC, histamine-synthesizing enzyme) or H(1)- or H(3)-receptor KO-mice whereas its waking effects persisted in H(2)-receptor KO-mice. These data validate the hypothesis that H(3)R-antagonists, through disinhibition of H(3)-autoreceptors, enhancing synaptic histamine that in turn activates postsynaptic H(1)-receptors promoting W. Interestingly amphetamine and modafinil, despite their potent arousal effects, appear unlikely to depend on histaminergic mechanism as their effects still occurred in HDC KO-mice. The present study thus distinguishes two classes of wake-improving agents: the first acting through non-histaminergic mechanisms and the second acting via histamine and supports brain H(3)-receptors as potentially novel therapeutic targets for vigilance and sleep-wake disorders.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.