• Stroke · Mar 2002

    Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.

    • Tetsuyoshi Horiuchi, Hans H Dietrich, Kazuhiro Hongo, Tetsuya Goto, and Ralph G Dacey.
    • Department of Neurosurgery, Washington University School of Medicine, St Louis, Mo 63110, USA.
    • Stroke. 2002 Mar 1;33(3):844-9.

    Background And PurposePotassium channels or nitric oxide or both are major mediators of acidosis-induced dilation in the cerebral circulation. However, these contributions depend on a variety of factors such as species and vessel location. The present study was designed to clarify whether potassium channels and endothelial nitric oxide are involved in acidosis-induced dilation of isolated rat cerebral arterioles.MethodsCerebral arterioles were cannulated and monitored with an inverted microscope. Acidosis (pH 6.8 to 7.4) produced by adding hydrogen ions mediated dilation of the cerebral arterioles in a concentration-dependent manner. The role of nitric oxide and potassium channels in response to acidosis was examined with several specific inhibitors and endothelial damage.ResultsThe dilation was significantly inhibited by potassium chloride (30 mmol/L) and glibenclamide (3 micromol/L; ATP-sensitive potassium channel inhibitor). We found that 30 micromol/L BaCl2 (concentration-dependent potassium channel inhibitor) also affected the dilation; however, an additional treatment of 3 micromol/L glibenclamide did not produce further inhibition. Tetraethylammonium ion (1 mmol/L; calcium-activated potassium channel inhibitor) and 4-aminopyridine (100 micromol/L; voltage-dependent potassium channel inhibitor) as well as ouabain (10 micromol/L; Na-K ATPase inhibitor) and N-methylsulphonyl-6-(2-proparglyloxyphenyl) hexanamide (1 micromol/L; cytochrome P450 epoxygenase inhibitor) did not alter acidotic dilation. N(omega)-Monomethyl-L-arginine (10 micromol/L) and N(omega)-nitro-L-arginine (10 micromol/L) as nitric oxide synthase inhibitor blunted the dilation. Furthermore, the dilation was significantly attenuated after the endothelial impairment. Additional treatment with glibenclamide (3 micromol/L) further reduced the dilation in response to acidosis.ConclusionsEndothelial nitric oxide and smooth muscle ATP-sensitive potassium channels contribute to acidosis-induced dilation of rat cerebral arterioles. Endothelial damage caused by pathological conditions such as subarachnoid hemorrhage or traumatic brain injury may contribute to reduced blood flow despite injury-induced cerebral acidosis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.