• Neuropharmacology · May 2014

    Review

    Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders.

    • Tadafumi Kato and Kazuya Iwamoto.
    • Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. Electronic address: kato@brain.riken.jp.
    • Neuropharmacology. 2014 May 1;80:133-9.

    AbstractCovalent modifications of nucleotides, such as methylation or hydroxymethylation of cytosine, regulate gene expression. Early environmental risk factors play a role in mental disorders in adulthood. This may be in part mediated by epigenetic DNA modifications. Methods for comprehensive analysis of DNA methylation and hydroxymethylation include DNA modification methods such as bisulfite sequencing, or collection of methylated, hydroxymethylated, or unmethylated DNA by specific binding proteins, antibodies, or restriction enzymes, followed by sequencing or microarray analysis. Results from these experiments should be interpreted with caution because each method gives different result. Cytosine hydroxymethylation has different effects on gene expression than cytosine methylation; methylation of CpG islands is associated with lower gene expression, whereas hydroxymethylation in intragenic regions is associated with higher gene expression. The role of hydroxymethylcytosine is of particular interest in mental disorders because the modification is enriched in the brain and synapse related genes, and it exhibits dynamic regulation during development. Many DNA methylation patterns are conserved across species, but there are also human specific signatures. Comprehensive analysis of DNA methylation shows characteristic changes associated with tissues, brain regions, cell types, and developmental states. Thus, differences in DNA methylation status between tissues, brain regions, cell types, and developmental stages should be considered when the role of DNA methylation in mental disorders is studied. Several disease-associated changes in methylation have been reported: hypermethylation of SOX10 in schizophrenia, hypomethylation of HCG9 (HLA complex group 9) in bipolar disorder, hypermethylation of PRIMA1, hypermethylation of SLC6A4 (serotonin transporter) in bipolar disorder, and hypomethylation of ST6GALNAC1 in bipolar disorder. These findings need to be replicated in different patient populations to be generalized. Further studies including animal experiments are necessary to understand the roles of DNA methylation in mental disorders.Copyright © 2013 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…