-
Journal of neurotrauma · Jan 2007
Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report.
- Jimmy W Huh, Ashley G Widing, and Ramesh Raghupathi.
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- J. Neurotrauma. 2007 Jan 1;24(1):15-27.
AbstractInfants who experience inflicted brain injury (shaken-impact syndrome) present with subdural hematoma, brain atrophy, and ventriculomegaly, pathologic features that are suggestive of multiple incidences of brain trauma. To develop a clinically relevant model of inflicted brain injury in infants, the skulls of anesthetized 11-day-old rat pups were subjected to one, two, or three successive mild impacts. While skull fractures were not observed, a single impact to the intact skull resulted in petechial hemorrhages in the subcortical white matter, and double or triple impacts led to hemorrhagic tissue tears at 1 day postinjury. Whereas the singly impacted brain did not exhibit overt damage at 7 days, two impacts resulted in an enlarged ventricle and white matter atrophy; three impacts to the brain led to similar pathology albeit at 3 days postinjury. By 7 days, cortical atrophy was observed following three impacts. Reactive astrocytes were visible in the deep cortical layers below the impact site after two impacts, and through all cortical layers after three impacts. Swellings were observed in intact axons in multiple white matter tracts at 1 day following single impact and progressed to axonal disconnections by 3 days. In contrast, double or triple impacts resulted in axonal disconnections by 1 day postinjury; in addition, three impacts led to extensive axonal injury in the dorsolateral thalamus by 3 days. Calpain activation was observed in axons in subcortical white matter tracts in all brain-injured animals at 1 day and increased with the number of impacts. Despite these pathologic alterations, neither one nor two impacts led to acquisition deficits on the Morris water maze. While indicative of the graded nature of the pathologic response, these data suggest that repetitive mild brain injury in the immature rat results in pathologic features similar to those following inflicted brain injuries in infants.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.