• Health devices · Oct 2000

    Comparative Study

    Next-generation pulse oximetry. Focusing on Masimo's signal extraction technology.

    • Health Devices. 2000 Oct 1;29(10):349-70.

    AbstractPulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn of dangerous saturation levels. But conventional pulse oximetry has some inherent limitations. For example, it has difficulty monitoring patients who are moving or who have poor perfusion; it is also subject to interference from certain visible and infrared light sources. Over the past several years, a number of companies have developed advanced signal-processing techniques that allow pulse oximeters to overcome many of these limitations. We refer to such new technologies as next-generation pulse oximetry. In this Evaluation, we focus on the first next-generation technology to have reached the market: Masimo Corporation's Signal Extraction Technology (SET). We designed our study of Masimo SET to address the main question that needs to be asked of any next-generation technology: How well does it compare to conventional pulse oximetry? Specifically, how well does it perform when a patient is moving or being moved, when a patient is poorly perfused, or when certain types of light strike the sensor while it is attached to or detached from the patient? We also examined one type of sensor used with this product, comparing it to conventional tape-on sensors for comfort and durability. Several other next-generation pulse-oximeter products have become available since we began this study. We are currently evaluating these products and will publish our findings in the near future. A list of the products, including a brief description of each, is included in this article. Pulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn against dangerous saturation levels. These monitors are often vital in helping to ensure patient safety, especially for critically ill patients, pediatric patients, and neonates. But conventional pulse oximetry has some inherent limitations--most significantly, it has difficulty monitoring patients who are moving or who have poor perfusion. Although gradual improvements have been made to the technology, only recently has it advanced to the point where it has really begun to overcome these limitations. A number of manufacturers have developed advanced signal-processing algorithms that allow pulse oximeters to "read through" motion and conditions of poor perfusion. The first of these "next-generation" pulse-oximeter technologies that reached the market was Masimo Corporation's Signal Extraction Technology (SET). We tested that product in this Evaluation. In this Overview, we'll tell you about conventional pulse oximetry and its shortfalls, next-generation technology and how it's designed to improve on the old methods, and how we approached our Evaluation of Masimo SET.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.