• World Neurosurg · May 2010

    Bedside monitoring of cerebral blood oxygenation and hemodynamics after aneurysmal subarachnoid hemorrhage by quantitative time-resolved near-infrared spectroscopy.

    • Noriaki Yokose, Kaoru Sakatani, Yoshihiro Murata, Takayuki Awano, Takahiro Igarashi, Sin Nakamura, Tatsuya Hoshino, and Yoichi Katayama.
    • Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan.
    • World Neurosurg. 2010 May 1;73(5):508-13.

    BackgroundEarly detection of vasospasm is essential for the treatment of delayed ischemic neurological deficits in subarachnoid hemorrhage (SAH). We evaluated cerebral blood oxygenation (CBO) changes after SAH employing quantitative time-resolved near-infrared spectroscopy (TR-NIRS) for this purpose.MethodsWe investigated 11 age-matched controls and 14 aneurysmal SAH patients, including 10 patients with WFNS grade V and 4 patients with grade II. Employing TR-NIRS, we measured the cortical oxygen saturation (CoSO(2)) and baseline hemoglobin concentrations in the middle cerebral artery territory. Measurements of TR-NIRS and transcranial Doppler sonography (TCD) were performed repeatedly after SAH.ResultsIn six patients, the CoSO(2) and hemoglobin concentrations remained stable after SAH; digital subtraction angiography (DSA) did not reveal vasospasm in these patients. In eight patients, however, CoSO(2) and total hemoglobin decreased abruptly between 5 and 9 days after SAH. DSA revealed diffuse vasospasms in six of eight patients. The reduction of CoSO(2) predicted occurrence of vasospasm at a cutoff value of 3.9%-6.4% with 100% of sensitivity and 85.7% of specificity. TCD failed to detect the vasospasm in four cases, which TR-NIRS could detect. Finally, TR-NIRS performed on Day 1 after SAH revealed significantly higher CoSO(2) than that of controls (p = .048), but there was no significant difference in total hemoglobin.ConclusionTR-NIRS detected vasospasm by evaluating the CBO in the cortex and may be more sensitive than TCD, which assesses the blood flow velocity in the M1 portion. The cerebral oxygen metabolism in SAH might be reduced by brain damage due to aneurysmal rupture.Copyright © 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.