-
Beijing Da Xue Xue Bao · Jun 2015
Comparative Study[Comparison of simple pooling and bivariate model used in meta-analyses of diagnostic test accuracy published in Chinese journals].
- Yuan-sheng Huang, Zhi-rong Yang, and Si-yan Zhan.
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China.
- Beijing Da Xue Xue Bao. 2015 Jun 18;47(3):483-8.
ObjectiveTo investigate the use of simple pooling and bivariate model in meta-analyses of diagnostic test accuracy (DTA) published in Chinese journals (January to November, 2014), compare the differences of results from these two models, and explore the impact of between-study variability of sensitivity and specificity on the differences.MethodsDTA meta-analyses were searched through Chinese Biomedical Literature Database (January to November, 2014). Details in models and data for fourfold table were extracted. Descriptive analysis was conducted to investigate the prevalence of the use of simple pooling method and bivariate model in the included literature. Data were re-analyzed with the two models respectively. Differences in the results were examined by Wilcoxon signed rank test. How the results differences were affected by between-study variability of sensitivity and specificity, expressed by I2, was explored.ResultsThe 55 systematic reviews, containing 58 DTA meta-analyses, were included and 25 DTA meta-analyses were eligible for re-analysis. Simple pooling was used in 50 (90.9%) systematic reviews and bivariate model in 1 (1.8%). The remaining 4 (7.3%) articles used other models pooling sensitivity and specificity or pooled neither of them. Of the reviews simply pooling sensitivity and specificity, 41(82.0%) were at the risk of wrongly using Meta-disc software. The differences in medians of sensitivity and specificity between two models were both 0.011 (P<0.001, P=0.031 respectively). Greater differences could be found as I2 of sensitivity or specificity became larger, especially when I2>75%.ConclusionMost DTA meta-analyses published in Chinese journals(January to November, 2014) combine the sensitivity and specificity by simple pooling. Meta-disc software can pool the sensitivity and specificity only through fixed-effect model, but a high proportion of authors think it can implement random-effect model. Simple pooling tends to underestimate the results compared with bivariate model. The greater the between-study variance is, the more likely the simple pooling has larger deviation. It is necessary to increase the knowledge level of statistical methods and software for meta-analyses of DTA data.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.