• Experimental neurology · Oct 2006

    Contralesional neural plasticity and functional changes in the less-affected forelimb after large and small cortical infarcts in rats.

    • J Edward Hsu and Theresa A Jones.
    • Institute for Neuroscience, The University of Texas at Austin, TX 78712, USA.
    • Exp. Neurol. 2006 Oct 1;201(2):479-94.

    AbstractSome studies have found that unilateral cerebral damage produces significant deficits in the ipsilesional, "less-affected", body side. Other studies have found that such damage results in a paradoxical hyperfunctionality of the ipsilesional body side and a facilitation of learning-induced neuroplastic changes in the contralesional motor cortex. The purpose of this study was to determine whether these effects co-exist and/or vary with lesion severity. After small or large unilateral ischemic lesions of the sensorimotor cortex (SMC) or sham operations, adult male rats were trained for 20 days to acquire a motor task, skilled reaching for food, for the first time with the ipsilesional forelimb. Analyses of movement patterns indicated lesion-size-dependent ipsilesional abnormalities in grasping, retrieving and releasing food pellets. Despite these impairments, success rates were significantly increased and aiming errors reduced in lesion groups compared with sham operates. Performance was best in rats with small lesions that had more minor ipsilesional impairments. In the motor cortex contralateral to the lesion and trained limb, there were significant increases in the density of dendrites immunoreactive for microtubule-associated protein-2 (MAP2) and of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) immunoreactivity compared with sham operates. These effects were correlated with reaching performance. Therefore, enhanced motor skill learning in the "less-affected" forelimb and contralesional neuroplastic changes are muted after larger lesions and co-exist with ipsilesional impairments. These effects may be related to a denervation-induced neural restructuring of the contralesional cortex that both disrupts pre-existing motor engrams and facilitates the establishment of new ones.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.