• Pediatrics · Jul 2015

    Automated Assessment of Children's Postoperative Pain Using Computer Vision.

    • Karan Sikka, Alex A Ahmed, Damaris Diaz, Matthew S Goodwin, Kenneth D Craig, Marian S Bartlett, and Jeannie S Huang.
    • Institute for Neural Computation, and.
    • Pediatrics. 2015 Jul 1;136(1):e124-31.

    BackgroundCurrent pain assessment methods in youth are suboptimal and vulnerable to bias and underrecognition of clinical pain. Facial expressions are a sensitive, specific biomarker of the presence and severity of pain, and computer vision (CV) and machine-learning (ML) techniques enable reliable, valid measurement of pain-related facial expressions from video. We developed and evaluated a CVML approach to measure pain-related facial expressions for automated pain assessment in youth.MethodsA CVML-based model for assessment of pediatric postoperative pain was developed from videos of 50 neurotypical youth 5 to 18 years old in both endogenous/ongoing and exogenous/transient pain conditions after laparoscopic appendectomy. Model accuracy was assessed for self-reported pain ratings in children and time since surgery, and compared with by-proxy parent and nurse estimates of observed pain in youth.ResultsModel detection of pain versus no-pain demonstrated good-to-excellent accuracy (Area under the receiver operating characteristic curve 0.84-0.94) in both ongoing and transient pain conditions. Model detection of pain severity demonstrated moderate-to-strong correlations (r = 0.65-0.86 within; r = 0.47-0.61 across subjects) for both pain conditions. The model performed equivalently to nurses but not as well as parents in detecting pain versus no-pain conditions, but performed equivalently to parents in estimating pain severity. Nurses were more likely than the model to underestimate youth self-reported pain ratings. Demographic factors did not affect model performance.ConclusionsCVML pain assessment models derived from automatic facial expression measurements demonstrated good-to-excellent accuracy in binary pain classifications, strong correlations with patient self-reported pain ratings, and parent-equivalent estimation of children's pain levels over typical pain trajectories in youth after appendectomy.Copyright © 2015 by the American Academy of Pediatrics.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…