• Plos One · Jan 2012

    EEG-based automatic classification of 'awake' versus 'anesthetized' state in general anesthesia using Granger causality.

    • Nicoletta Nicolaou, Saverios Hourris, Pandelitsa Alexandrou, and Julius Georgiou.
    • Department of Electrical and Computer Engineering, KIOS Research Centre, University of Cyprus, Nicosia, Cyprus. nicoletta.n@ucy.ac.cy
    • Plos One. 2012 Jan 1;7(3):e33869.

    BackgroundGeneral anesthesia is a reversible state of unconsciousness and depression of reflexes to afferent stimuli induced by administration of a "cocktail" of chemical agents. The multi-component nature of general anesthesia complicates the identification of the precise mechanisms by which anesthetics disrupt consciousness. Devices that monitor the depth of anesthesia are an important aide for the anesthetist. This paper investigates the use of effective connectivity measures from human electrical brain activity as a means of discriminating between 'awake' and 'anesthetized' state during induction and recovery of consciousness under general anesthesia.Methodology/Principal FindingsGranger Causality (GC), a linear measure of effective connectivity, is utilized in automated classification of 'awake' versus 'anesthetized' state using Linear Discriminant Analysis and Support Vector Machines (with linear and non-linear kernel). Based on our investigations, the most characteristic change of GC observed between the two states is the sharp increase of GC from frontal to posterior regions when the subject was anesthetized, and reversal at recovery of consciousness. Features derived from the GC estimates resulted in classification of 'awake' and 'anesthetized' states in 21 patients with maximum average accuracies of 0.98 and 0.95, during loss and recovery of consciousness respectively. The differences in linear and non-linear classification are not statistically significant, implying that GC features are linearly separable, eliminating the need for a complex and computationally expensive non-linear classifier. In addition, the observed GC patterns are particularly interesting in terms of a physiological interpretation of the disruption of consciousness by anesthetics. Bidirectional interaction or strong unidirectional interaction in the presence of a common input as captured by GC are most likely related to mechanisms of information flow in cortical circuits.Conclusions/SignificanceGC-based features could be utilized effectively in a device for monitoring depth of anesthesia during surgery.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…