-
Clinical Trial
Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery.
- Hayashida Ken-Ichiro K Department of Anesthesiology and Center for Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, N, Sophia DeGoes, Regina Curry, and James C Eisenach.
- Department of Anesthesiology and Center for Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, North Carolina 27157-1009, USA.
- Anesthesiology. 2007 Mar 1; 106 (3): 557-62.
BackgroundGabapentin has been reported to inhibit various acute and chronic pain conditions in animals and humans. Although the efficacy of gabapentin depends on the alpha2delta subunit of voltage-gated calcium channels, its analgesic mechanisms in vivo are still unknown. Here, the authors tested the role of spinal noradrenergic inhibition in gabapentin's analgesia for postoperative pain.MethodsGabapentin was administered orally and intracerebroventricularly to rats on the day after paw incision, and withdrawal threshold to paw pressure was measured. The authors also measured cerebrospinal fluid concentration of norepinephrine and postoperative morphine use after surgery in patients who received oral placebo or gabapentin.ResultsBoth oral and intracerebroventricular gabapentin attenuated postoperative hypersensitivity in rats in a dose-dependent manner. This effect of gabapentin was blocked by intrathecal administration of the alpha2-adrenergic receptor antagonist idazoxan and the G protein-coupled inwardly rectifying potassium channel antagonist tertiapin-Q, but not by atropine. In humans, preoperative gabapentin, 1,200 mg, significantly increased norepinephrine concentration in cerebrospinal fluid and decreased morphine requirements.ConclusionsThese data suggest that gabapentin activates the descending noradrenergic system and induces spinal norepinephrine release, which produces analgesia via spinal alpha2-adrenoceptor stimulation, followed by activation of G protein-coupled inwardly rectifying potassium channels. The authors' clinical data suggest that gabapentin activates the descending noradrenergic system after preoperative oral administration at the time of surgery. These data support a central mechanism of oral gabapentin to reduce postoperative pain and suggest that this effect could be magnified by treatments that augment the effect of norepinephrine release.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.