• Respirology · Aug 2014

    Review

    Aligning mouse models of asthma to human endotypes of disease.

    • Rebecca A Martin, Samantha R Hodgkins, Anne E Dixon, and Matthew E Poynter.
    • Vermont Lung Center, Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, Burlington, Vermont, USA.
    • Respirology. 2014 Aug 1;19(6):823-33.

    AbstractSubstantial gains in understanding the pathophysiologic mechanisms underlying asthma have been made using preclinical mouse models. However, because asthma is a complex, heterogeneous syndrome that is rarely due to a single allergen and that often presents in the absence of atopy, few of the promising therapeutics that demonstrated effectiveness in mouse models have translated into new treatments for patients. This has resulted in an urgent need to characterize T helper (Th) 2-low, non-eosinophilic subsets of asthma, to study models that are resistant to conventional treatments such as corticosteroids and to develop therapies targeting patients with severe disease. Classifying asthma based on underlying pathophysiologic mechanisms, known as endotyping, offers a stratified approach for the development of new therapies for asthma. In preclinical research, new models of asthma are being utilized that more closely resemble the clinical features of different asthma endotypes, including the presence of interleukin-17 and a Th17 response, a biomarker of severe disease. These models utilize more physiologically relevant sensitizing agents, exacerbating factors and allergens, as well as incorporate time points that better reflect the natural history and chronicity of clinical asthma. Importantly, some models better represent non-classical asthma endotypes that facilitate the study of non-Th2-driven pathology and resemble the complex nature of clinical asthma, including corticosteroid resistance. Placing mouse asthma models into the context of human asthma endotypes will afford a more relevant approach to the understanding of pathophysiological mechanisms of disease that will afford the development of new therapies for those asthmatics that remain difficult to treat.© 2014 Asian Pacific Society of Respirology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.