• Journal of neurotrauma · Mar 2016

    Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    • Deborah A Shear, C Edward Dixon, Helen M Bramlett, Stefania Mondello, W Dalton Dietrich, Ying Deng-Bryant, Kara E Schmid, Kevin K W Wang, Ronald L Hayes, John T Povlishock, Patrick M Kochanek, and Frank C Tortella.
    • 1 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland.
    • J. Neurotrauma. 2016 Mar 15; 33 (6): 523-37.

    AbstractNicotinamide (vitamin B3) was the first drug selected for cross-model testing by the Operation Brain Trauma Therapy (OBTT) consortium based on a compelling record of positive results in pre-clinical models of traumatic brain injury (TBI). Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Nicotinamide (50 or 500 mg/kg) was delivered intravenously at 15 min and 24 h after injury with subsequent behavioral, biomarker, and histopathological outcome assessments. There was an intermediate effect on balance beam performance with the high (500 mg/kg) dose in the CCI model, but no significant therapeutic benefit was detected on any other motor task across the OBTT TBI models. There was an intermediate benefit on working memory with the high dose in the FPI model. A negative effect of the low (50 mg/kg) dose, however, was observed on cognitive outcome in the CCI model, and no cognitive improvement was observed in the PBBI model. Lesion volume analysis showed no treatment effects after either FPI or PBBI, but the high dose of nicotinamide resulted in significant tissue sparing in the CCI model. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-1 (UCH-L1) in blood at 4 or 24 h after injury. Negative effects (both doses) were detected on biomarker levels of GFAP after FPI and on biomarker levels of UCH-L1 after PBBI. The high dose of nicotinamide, however, reduced GFAP levels after both PBBI and CCI. Overall, our results showed a surprising lack of benefit from the low dose nicotinamide. In contrast, and partly in keeping with the literature, some benefit was achieved with the high dose. The marginal benefits achieved with nicotinamide, however, which appeared sporadically across the TBI models, has reduced enthusiasm for further investigation by the OBTT Consortium.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.