• Circulation research · Apr 2010

    Lung endothelial dysfunction in congestive heart failure: role of impaired Ca2+ signaling and cytoskeletal reorganization.

    • Alexander Kerem, Jun Yin, Stephanie M Kaestle, Julia Hoffmann, Axel M Schoene, Baljit Singh, Hermann Kuppe, Mathias M Borst, and Wolfgang M Kuebler.
    • Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany.
    • Circ. Res. 2010 Apr 2;106(6):1103-16.

    RationaleCongestive heart failure (CHF) frequently results in remodeling and increased tone of pulmonary resistance vessels. This adaptive response, which aggravates pulmonary hypertension and thus, promotes right ventricular failure, has been attributed to lung endothelial dysfunction.ObjectiveWe applied real-time fluorescence imaging to identify endothelial dysfunction and underlying molecular mechanisms in an experimental model of CHF induced by supracoronary aortic banding in rats.Methods And ResultsEndothelial dysfunction was evident in lungs of CHF rats as impaired endothelium-dependent vasodilation and lack of endothelial NO synthesis in response to mechanical stress, acetylcholine, or histamine. This effect was not attributable to downregulation of endothelial NO synthase. Imaging of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) revealed a singular impairment of endothelial [Ca(2+)](i) homeostasis and signaling characterized by a lack of [Ca(2+)](i) oscillations and deficient or attenuated [Ca(2+)](i) responses to mechanical stress, histamine, acetylcholine, or thapsigargin. Reconstitution of a [Ca(2+)](i) signal by ionophore treatment restored endothelial NO production, but lack of endothelial responsiveness was not primarily attributable to downregulation of Ca(2+) influx channels in CHF. Rather, we identified a massive remodeling of the endothelial cytoskeleton in the form of an increased expression of beta-actin and F-actin formation which contributed critically to endothelial dysfunction in CHF because cytoskeletal disruption by cytochalasin D largely reconstituted endothelial [Ca(2+)](i) signaling and NO production.ConclusionsOur findings characterize a unique scenario of endothelial dysfunction in CHF that is caused by a singular impairment of [Ca(2+)](i) signaling, and identify cytoskeletal reorganization as a major regulator of endothelial signaling and function.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…