• Spine · Jan 2005

    Biomechanical testing of the lumbar facet interference screw.

    • Frank Kandziora, Philip Schleicher, Matti Scholz, Robert Pflugmacher, Tanja Eindorf, Norbert P Haas, and Paul W Pavlov.
    • Unfall- und Wiederherstellungschirurgie, Universitätsklinikum Charité der Humboldt Universität Berlin, Campus Virchow-Klinikum, Berlin, Germany. frank.kandziora@charite.de
    • Spine. 2005 Jan 15;30(2):E34-9.

    Study DesignAn in vitro study was conducted to determine the biomechanical properties of a new simple, percutaneous, posterior fixation technique for the lumbar spine involving a new implant, the so-called Lumbar Facet Interference Screw.ObjectivesThe purpose of this study was to compare the biomechanical properties of this new fixation device with translaminar and pedicle screw fixation.Summary Of Background DataSeveral techniques were described to perform a minimal invasive posterior stabilization of the lumbar spine after an anterior lumbar interbody fusion procedure. Yet, due to the high complexity of these minimally invasive surgical procedures, currently, hardly any of these percutaneous posterior fixation techniques is carried out routinely.MethodsTen human lumbar spines were tested in flexion, extension, axial rotation, and lateral bending using a nonconstrained testing method. First, all motion segments were evaluated intact (group 1). After complete discectomy of L4-L5, the following stabilization techniques were tested sequentially (n = 10/group): group 2: "stand-alone" cage; group 3: cage plus translaminar screws; group 4: cage plus Lumbar Facet Interference Screw; and group 5: cage plus pedicle screws. Stiffness, ranges of motion, and neutral and elastic zones were determined.ResultsIn comparison to the intact motion segment, the "stand-alone" cage showed a significantly higher (P < 0.05) range of motion, neutral zone, and elastic zone and a significantly lower (P < 0.05) stiffness in extension and rotation. Generally, all fixation techniques using cages plus posterior stabilization decreased range of motion, neutral zone, and elastic zone and increased stiffness in comparison to the "stand-alone" cage group. There was no significant difference between the cage plus interference screw and the cage plus translaminar screw group in all test modes. In comparison to the 2 facet joint stabilization techniques, pedicle screw stabilization decreased (P < 0.01) range of motion, neutral zone, and elastic zone and increased (P < 0.01) stiffness significantly in flexion and rotation.ConclusionsResults of this study indicate that the new Lumbar Facet Interference Screw fixation yields initial biomechanical stability similar to translaminar screw fixation, yet inferior biomechanical stability compared to pedicle screw fixation. Although these results are encouraging, additional biomechanical studies including cyclic loading tests have to evaluate the mid- and long-term stabilization capacity of this new minimally invasive fixation technique before human application.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.