-
Critical care medicine · Sep 2011
Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia.
- Emmanuel Nowak, Florence Ader, Karine Faure, Rozenn Le Berre, Sophie Nguyen, Maud Pierre, Lauriane Quenee, Steve Lancel, René Courcol, Benoît P Guery, and Pyopneumagen Group.
- Université de Lille II, Faculté de Médecine, U1019, Lille, France. rozenn.leberre@chu-brest.fr
- Crit. Care Med.. 2011 Sep 1;39(9):2113-20.
ObjectiveThe pathogenesis and the outcome of Pseudomonas aeruginosa ventilator-acquired pneumonia depend on the virulence factors displayed by the bacteria as well as the host response. Thus, quorum sensing, lipopolysaccharide, and type 3 secretion system have each individually been shown to be important virulence systems in laboratory reference strains. However, the relative contribution of these three factors to the in vivo pathogenicity of clinically relevant strains has never been studied. We analyzed the virulence of 56 nonclonal Pseudomonas aeruginosa strains isolated from critically ill patients with ventilator-acquired pneumonia. To avoid the variation of human immune response, we used a murine model of pneumonia. The aim was to determine which virulence factor was the most important.SettingResearch laboratory of a university.SubjectsMale adult BALB/c mice.InterventionsIn vitro, the phenotype of each strain was established as to the expression of quorum sensing-regulated factors (elastase and pyocyanin), type 3 secretion system exotoxin secretion (Exotoxin U, S and/or T, or "nonsecreting"), and lipopolysaccharide O-antigen serotype. Strain pathogenicity was evaluated in vivo in a mouse model of acute pneumonia through lung injury assessment by measuring alveolar-capillary barrier permeability to proteins, lung wet/dry weight ratio, and bacterial dissemination. Associations were then sought between virulence system phenotypes and levels of lung injury.Measurements And Main ResultsIn univariate analysis, elastase production, O11 serotype, and type 3 secretion system exotoxin secretion were associated with increased lung injury and exotoxin U was linked to an increase risk of bacteremia. In multivariate analysis, we observed that type 3 secretion system exotoxin secretion and to a lesser degree elastase production were associated with increased lung injury.ConclusionIn a murine model of pneumonia, our data suggest that type 3 secretion system and elastase are the most important virulence factors in clinically relevant P. aeruginosa strains.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.