• Plos One · Jan 2013

    Serum 1,25-dihydroxyvitamin D: an outcome prognosticator in human sepsis.

    • H Bryant Nguyen, Blen Eshete, K H William Lau, Adarsh Sai, Mark Villarin, and David Baylink.
    • Department of Medicine, Loma Linda University, Loma Linda, California, United States of America. hbnguyen@llu.edu
    • Plos One. 2013 Jan 1;8(5):e64348.

    AbstractIn sepsis, the vitamin D active metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D) may play a crucial role by its action to produce cathelicidin and improve endothelial barrier function, such that a deficiency in 1,25(OH)2D is associated with poor outcome. To test our hypothesis, we performed analysis of stored plasma samples from a prospective observational study in 91 patients with sepsis, age of 59.1+/-2.0 years, 52.7% females, and 11.0% deaths at 30 days. Vitamin D status, including 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), and parathyroid hormone (PTH), were measured daily over 3 days after hospital admission. At baseline, 1,25(OH)2D was significantly different between survivors vs. non-survivors. But there was no significant difference in 25(OH)D, 24,25(OH)2D, and PTH. In a multivariable binomial logistic regression model, age, total calcium and 1,25(OH)2D were significant predictors of 30-day mortality. Kaplan Meier analysis showed that patients with mean 1,25(OH)2D measured over 3 days of < = 13.6 pg/mL had 57.1% 30-day survival compared to 91.7% in patients with 1,25 (OH)2D level >13.6 pg/mL (p<0.01). From repeated measures regression analysis, there was significant increase in 1,25(OH)2D for increases in 25(OH)D in both survivors and non-survivors. However, compared to survivors, the low 25(OH)D in non-survivors was insufficient to account for the larger decrease in 1,25(OH)2D, indicating a dysfunctional 1α-hydroxylase. Additionally, there was a significant negative correlation between PTH and 1,25(OH)2D in both survivors and non-survivors, suggesting a severe impairment in the effect of PTH to increase renal 1α-hydroxylase activity. In conclusion, low 1,25(OH)2D levels are associated with increased 30-day mortality in sepsis patients, likely due to impaired 25(OH)D hydroxylation and PTH insensitivity. Our data also suggest that the active metabolite 1,25(OH)2D may be an important therapeutic target in the design of sepsis clinical trials.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.