• J. Neurol. Sci. · Sep 2011

    Review

    Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls.

    • Gerhard Winneke.
    • Division of Neurobehavioral Toxicology, Medical Institute of Environmental Hygiene, Heinrich-Heine-Universität, Auf'm Hennekamp 50, D-40225, Düsseldorf, Germany. gerhard.winneke@uni-duesseldorf.de
    • J. Neurol. Sci. 2011 Sep 15;308(1-2):9-15.

    AbstractThe particular vulnerability of the developing nervous system for low-level exposure to chemicals is well established. It has been argued that some degree of developmental neurotoxicity was found for a large number of industrial chemicals. However, for only few of these, namely inorganic lead, arsenic, organic mercury and polychlorinated biphenyls (PCBs), human evidence is available to suggest that these may cause neurodevelopmental adversity and may, thus, be involved in contributing to neurodevelopmental disorders like autism, attention-deficit disorder, mental retardation or cerebral palsy. The focus of this overview is on PCBs and inorganic lead as developmental neurotoxicants at environmental levels of exposure. The adverse effects of inorganic lead on the developing brain have long been studied, and much emphasis has been on subtle degrees of mental retardation in terms of intelligence (IQ). The evidence is consistent, but the effect sizes are typically small. Research interest has also been devoted to studying aspects of "attention-deficit hyperactivity disorder" (ADHD) in children in relation to environmental exposure to lead in both cross-sectional and case-control studies. More recently, we have also studied core elements of ADHD according to ICD-10 and DSM-IV in relation to environmental exposure to lead, mercury and aluminum in asymptomatic school children in Romania. Both, performance measures (several attention tasks) and questionnaire-based behavior ratings from parents and teachers showed that lead, but not Hg or Al, was consistently and adversely associated with core elements of ADHD. These findings in asymptomatic children nicely fit into the overall pattern of observations and suggest that, apart from genetic influences, low-level exposure to lead contributes to this neurodevelopmental disorder. Polychlorinated biphenyls (PCBs) are persistent organic pollutants with lipophilic properties. Due to their persistence, they are still present in environmental media at potentially harmful concentrations, although production and use of PCBs was already banned in the early 1980s. Several prospective cohort studies-including our Düsseldorf study-have demonstrated that pre- and early postnatal exposure to PCBs is associated with deficit or retardation of mental and/or motor development, even after adjusting for maternal intelligence and developmental effects of the quality of the home environment. The pathophysiology is still unclear, although interference with thyroid metabolism during brain development is being discussed. Based on these reviews, three aspects, namely pre- vs. postnatal impact, effect scaling for comparative purposes, and integration of neurobehavioral findings into clinical and neuroscience contexts, are outlined as lessons learned from neurodevelopmental observations in children environmentally exposed to lead or PCBs.Copyright © 2011 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…