• Molecular medicine · Sep 2007

    Comparative Study

    Adrenomedullin and adrenomedullin binding protein-1 protect endothelium-dependent vascular relaxation in sepsis.

    • Mian Zhou, Subir R Maitra, and Ping Wang.
    • Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, and The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA.
    • Mol. Med. 2007 Sep 1;13(9-10):488-94.

    AbstractDownregulation of vascular endothelial constitutive nitric oxide synthase (ecNOS) contributes to the vascular hyporesponsiveness in sepsis. Although coadministration of the potent vasodilatory peptide adrenomedulin (AM) and the newly discovered AM binding protein (AMBP-1) maintains cardiovascular stability and reduces mortality in sepsis, it remains unknown whether AM/AMBP-1 prevents endothelial cell dysfunction. To investigate this possibility, we subjected adult male rats to sepsis by cecal ligation and puncture (CLP), with or without subsequent intravenous administration of the combination of AM (12 microg/kg) and AMBP-1 (40 microg/kg). Thoracic aortae were harvested 20 h after CLP (i.e., the late stage of sepsis) and endothelium-dependent vascular relaxation was determined by the addition of acetylcholine (ACh) in an organ bath system. In addition, ecNOS gene and protein expression was assessed by RT-PCR and immunohistochemistry, respectively. The results indicate that ACh-induced (i.e., endothelium-dependent) vascular relaxation was significantly reduced 20 h after CLP. Administration of AM/AMBP-1 prevented the reduction of vascular relaxation. In addition, ecNOS gene expression in aortic and pulmonary tissues was downregulated 20 h after CLP and AM/AMBP-1 attenuated such a reduction. Moreover, the decreased ecNOS staining in thoracic aortae of septic animals was prevented by the treatment with AM/AMBP-1. These results, taken together, indicate that AM/AMBP-1 preserves ecNOS and prevents reduced endothelium-dependent vascular relaxation (i.e., endothelial cell dysfunction) in sepsis. In light of our recent finding that AM/AMBP-1 improves organ function and reduces mortality in sepsis, it is most likely that the protective effect of these compounds on ecNOS is a mechanism responsible for the salutary effect of AM/AMBP-1 in sepsis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.