• J. Pharmacol. Exp. Ther. · May 1999

    Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats.

    • K A Sluka, M Deacon, A Stibal, S Strissel, and A Terpstra.
    • Neuroscience Graduate Program, The University of Iowa, Iowa City, Iowa,USA. kathleen-sluka@uiowa.edu
    • J. Pharmacol. Exp. Ther. 1999 May 1;289(2):840-6.

    AbstractTranscutaneous electrical nerve stimulation (TENS) is commonly used for relief of pain. The literature on the clinical application of TENS is extensive. However, surprisingly few reports have addressed the neurophysiological basis for the actions of TENS. The gate control theory of pain is typically used to explain the actions of high-frequency TENS, whereas, low-frequency TENS is typically explained by release of endogenous opioids. The current study investigated the role of mu, delta, and kappa opioid receptors in antihyperalgesia produced by low- and high-frequency TENS by using an animal model of inflammation. Antagonists to mu (naloxone), delta (naltrinodole), or kappa (nor-binaltorphimine) opioid receptors were delivered to the spinal cord by microdialysis. Joint inflammation was induced by injection of kaolin and carrageenan into the knee-joint cavity. Withdrawal latency to heat was assessed before inflammation, during inflammation, after drug (or artificial cerebral spinal fluid as a control) administration, and after drug (or artificial cerebral spinal fluid) administration + TENS. Either high- (100 Hz) or low- frequency (4 Hz) TENS produced approximately 100% inhibition of hyperalgesia. Low doses of naloxone, selective for mu opioid receptors, blocked the antihyperalgesia produced by low-frequency TENS. High doses of naloxone, which also block delta and kappa opioid receptors, prevented the antihyperalgesia produced by high-frequency TENS. Spinal blockade of delta opioid receptors dose-dependently prevented the antihyperalgesia produced by high-frequency TENS. In contrast, blockade of kappa opioid receptors had no effect on the antihyperalgesia produced by either low- or high-frequency TENS. Thus, low-frequency TENS produces antihyperalgesia through mu opioid receptors and high-frequency TENS produces antihyperalgesia through delta opioid receptors in the spinal cord.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…