-
- René Pelletier, Johanne Higgins, and Daniel Bourbonnais.
- R. Pelletier, MSc, Sciences de la Réadaptation, École de Réadaptation, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Phys Ther. 2015 Nov 1; 95 (11): 1582-91.
AbstractPresent interventions utilized in musculoskeletal rehabilitation are guided, in large part, by a biomedical model where peripheral structural injury is believed to be the sole driver of the disorder. There are, however, neurophysiological changes across different areas of the peripheral and central nervous systems, including peripheral receptors, dorsal horn of the spinal cord, brain stem, sensorimotor cortical areas, and the mesolimbic and prefrontal areas associated with chronic musculoskeletal disorders, including chronic low back pain, osteoarthritis, and tendon injuries. These neurophysiological changes appear not only to be a consequence of peripheral structural injury but also to play a part in the pathophysiology of chronic musculoskeletal disorders. Neurophysiological changes are consistent with a biopsychosocial formulation reflecting the underlying mechanisms associated with sensory and motor findings, psychological traits, and perceptual changes associated with chronic musculoskeletal conditions. These changes, therefore, have important implications in the clinical manifestation, pathophysiology, and treatment of chronic musculoskeletal disorders. Musculoskeletal rehabilitation professionals have at their disposal tools to address these neuroplastic changes, including top-down cognitive-based interventions (eg, education, cognitive-behavioral therapy, mindfulness meditation, motor imagery) and bottom-up physical interventions (eg, motor learning, peripheral sensory stimulation, manual therapy) that induce neuroplastic changes across distributed areas of the nervous system and affect outcomes in patients with chronic musculoskeletal disorders. Furthermore, novel approaches such as the use of transcranial direct current stimulation and repetitive transcranial magnetic stimulation may be utilized to help renormalize neurological function. Comprehensive treatment addressing peripheral structural injury as well as neurophysiological changes occurring across distributed areas of the nervous system may help to improve outcomes in patients with chronic musculoskeletal disorders.© 2015 American Physical Therapy Association.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.