-
- Stefan Kreyer, Vittorio Scaravilli, Katharina Linden, Slava M Belenkiy, Corina Necsoiu, Yansong Li, Christian Putensen, Kevin K Chung, Andriy I Batchinsky, and Leopoldo C Cancio.
- *Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany †U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas ‡Dipartimento di Scienze della Salute, Università Milano-Bicocca, Monza (MB), Italy §Pediatric Department, University Hospital Bonn, Bonn, Germany ||Department of Anesthesiology, West Virginia University School of Medicine, Morgantown, West Virginia ¶Uniformed Services University of the Health Sciences, Bethesda, Maryland.
- Shock. 2016 Jan 1; 45 (1): 65-72.
IntroductionIn thermally injured patients, inhalation injury is often associated with acute respiratory distress syndrome (ARDS), and is an independent predictor of increased morbidity and mortality. Extracorporeal CO2 removal (ECCO2R) therapy offers new possibilities in protective mechanical ventilation in ARDS patients. We performed an early application of ECCO2R in mild-to-moderate ARDS in sheep ventilated in BiPAP mode. Our aim was to investigate its effect on severity of the lung injury.Material And MethodsNon-pregnant farm-bred ewes (n = 15) were anesthetized and injured by a combination of wood-bark smoke inhalation and a 40% total body surface area full-thickness burn, and were observed for 72 h or death. The animals were randomized to a Hemolung group (n = 7) or a Control group (n = 8) at time of ARDS onset. ECCO2R was performed in the Hemolung group after onset of ARDS.Histopathology, CT scans, systemic and pulmonary variables, and CO2 removal were examined.ResultsEarly application of ECCO2R therapy with Hemolung in spontaneously breathing sheep decreased PaCO2 significantly, while the device removed about 70 mL of CO2 per minute. This did not result in lower minute ventilation in the Hemolung group. Lungpathology and CT scans did not show a difference between groups.ConclusionIn an ovine model of ARDS due to smoke inhalation and burn injury, early institution of ECCO2R in spontaneously breathing animals was effective in removing CO2 and in reducing PaCO2. However, it had no effect on reducing the severity of lung injury or mortality. Further studies are necessary to detail the interaction between extracorporeal CO2 removal and pulmonary physiology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.