• J R Soc Interface · May 2011

    Blast-related fracture patterns: a forensic biomechanical approach.

    • Arul Ramasamy, Adam M Hill, Spyros Masouros, Iain Gibb, Anthony M J Bull, and Jon C Clasper.
    • Imperial Blast Biomechanics and Biophysics Group, Rm 4.28 Royal School of Mines, Imperial College London, South Kensington, London SW7 2AZ, UK. a.ramasamy09@imperial.ac.uk
    • J R Soc Interface. 2011 May 6;8(58):689-98.

    AbstractImproved protective measures and medical care has increased the survivability from battlefield injuries. In an attempt to reduce the debilitating consequences of blast injury, understanding and mitigating the effects of explosion on the extremities is key. In this study, forensic biomechanical analyses have been applied to determine mechanisms of injury after the traumatic event. The aims of this study were (i) to determine which effects of the explosion are responsible for combat casualty extremity bone injury in two distinct environments, namely open, free-field (open group), and in vehicle or in cover (enclosed group), and (ii) to determine whether patterns of combat casualty bone injury differed between environments. Medical records of casualties admitted to a military hospital in Afghanistan were reviewed over a six-month period. Explosive injuries have been sub-divided traditionally into primary, secondary and tertiary effects. All radiographs were independently reviewed by a military radiologist, a team of military orthopaedic surgeons and a team of academic biomechanists, in order to determine 'zones of injury' (ZoIs), and their related mechanisms. Sixty-two combat casualties with 115 ZoIs were identified. Thirty-four casualties in the open group sustained 56 ZoIs; 28 casualties in the enclosed group sustained 59 ZoIs. There was no statistical difference in mean ZoIs per casualty between groups (p = 0.54). There was a higher proportion of lower limb injuries in the enclosed group compared with the open group (p < 0.05). Of the casualties in the open group, 1 ZoI was owing to the primary effects of blast, 10 owing to a combination of primary and secondary blast effects, 23 owing to secondary blast effects and 24 owing to tertiary blast effects. In contrast, tertiary blast effects predominated in the enclosed group, accounting for 96 per cent of ZoIs. These data clearly demonstrate two distinct injury groups based upon the casualties' environment. The enclosed environment appears to attenuate the primary and secondary effects of the explosion. However, tertiary blast effects were the predominant mechanism of injury, with severe axial loading to the lower extremity being a characteristic of the fractures seen. The development of future mitigation strategies must focus on reducing all explosion-related injury mechanisms. Integral to this process is an urgent requirement to better understand the behaviour of bone in this unique environment.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…