• Pain · Feb 2001

    Randomized Controlled Trial Clinical Trial

    Heat, but not mechanical hyperalgesia, following adrenergic injections in normal human skin.

    • P N Fuchs, R A Meyer, and S N Raja.
    • Department of Neurosurgery, Johns Hopkins University, 5-109 Meyer Bldg., 600 N. Wolfe Street, Baltimore, MD 21287, USA.
    • Pain. 2001 Feb 1;90(1-2):15-23.

    AbstractThe development of adrenergic sensitivity in nociceptors has been suggested as a mechanism of neuropathic pain. We sought to determine if nociceptors in the skin of normal subjects exhibit adrenergic sensitivity. We investigated the effects of intradermal administration of norepinephrine, phenylephrine, and brimonidine on heat pain sensitivity. Norepinephrine and phenylephrine (in concentrations ranging from 0.1 to 10 microM by factors of 10), brimonidine (at 0.01-1 microM), and saline were injected (30 microl volume) in a random, double-blind manner to different sites on the volar surface of the forearm in ten subjects. Before and after the injections, heat testing was performed with a non-contact laser thermal stimulator. Heat pain threshold was measured by means of a 'Marstock' technique in which subjects pressed a reaction time key when they perceived that a slowly increasing heat stimulus (1 degrees C/s ramp from a 36 degrees C base) was painful. In addition, the subjects used magnitude estimation techniques to rate the intensity of pain to a suprathreshold heat stimulus (47 degrees C, 2 s). Mechanical testing was done using 200-microm diameter probes attached to calibrated weights that provided forces over the range of 16-512 mN. The intradermal injections of norepinephrine, phenylephrine and brimonidine produced little evoked pain. However, a dose-dependant decrease in heat pain threshold, but not mechanical pain threshold, was observed. At the highest drug dose injected, all three adrenergic compounds produced a significant decrease in heat pain threshold compared to the saline injection. A significant increase in response to the suprathreshold heat stimulus was also found. One possible explanation for this apparent heat hyperalgesia is that the decrease in perfusion due to the localized vasoconstriction may alter the heat response. However, in control studies we found that the non-adrenergic vasoconstrictors, angiotensin II and vasopressin did not produce heat hyperalgesia at doses that produced comparable decreases in blood flow. In addition, occlusion of blood flow with a blood pressure cuff did not lead to heat hyperalgesia. Thus, the heat hyperalgesia observed with the adrenergic agonists is not due to a decrease in perfusion associated with the injection. These results indicate that alpha(1)- and alpha(2)-adrenoceptor-mediated mechanisms may play a role in sensitization of nociceptors to heat stimuli in normal skin.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.