• Anesthesia and analgesia · Jan 2016

    Comparative Study

    Trends of Hemoglobin Oximetry: Do They Help Predict Blood Transfusion During Trauma Patient Resuscitation?

    • Shiming Yang, Peter F Hu, Amechi Anazodo, Cheng Gao, Hegang Chen, Christine Wade, Lauren Hartsky, Catriona Miller, Cristina Imle, Raymond Fang, and Colin F Mackenzie.
    • From the *Department of Anesthesiology, University of Maryland School of Medicine, Baltimore Maryland; †Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland; ‡Department of Epidemiology, University of Maryland School of Medicine, Baltimore, Maryland; §U.S. Air Force Center for the Sustainment of Trauma and Readiness Skills, University of Maryland, Baltimore, Maryland.
    • Anesth. Analg. 2016 Jan 1;122(1):115-25.

    BackgroundA noninvasive decision support tool for emergency transfusion would benefit triage and resuscitation. We tested whether 15 minutes of continuous pulse oximetry-derived hemoglobin measurements (SpHb) predict emergency blood transfusion better than conventional oximetry, vital signs, and invasive point-of-admission (POA) laboratory testing. We hypothesized that the trends in noninvasive SpHb features monitored for 15 minutes predict emergency transfusion better than pulse oximetry, shock index (SI = heart rate/systolic blood pressure), or routine POA laboratory measures.MethodsWe enrolled direct trauma patient admissions ≥18 years with prehospital SI ≥0.62, collected vital signs (continuous SpHb and conventional pulse oximetry, heart rate, and blood pressure) for 15 minutes after admission, and recorded transfusion (packed red blood cells [pRBCs]) within 1 to 3, 1 to 6, and 1 to 12 hours of admission. One blood sample was drawn during the first 15 minutes. The laboratory Hb was compared with its corresponding SpHb reading for numerical, clinical, and prediction difference. Ten prediction models for transfusion, including combinations of prehospital vital signs, SpHb, conventional oximetry, and routine POA, were selected by stepwise logistic regression. Predictions were compared via area under the receiver operating characteristic curve by the DeLong method.ResultsA total of 677 trauma patients were enrolled in the study. The prediction performance of the models, including POA laboratory values and SI (and the need for blood pressure), was better than those without POA values or SI. In predicting pRBC 1- to 3-hour transfusion, adding SpHb features (receiver operating characteristic curve [ROC] = 0.65; 95% confidence interval [CI], 0.53-0.77) does not improve ROC from the base model (ROC = 0.64; 95% CI, 0.52-0.76) with P = 0.48. Adding POA laboratory Hb features (ROC = 0.72; 95% CI, 0.60-0.84) also does not improve prediction performance (P = 0.18). Other POA laboratory testing predicted emergency blood use with ROC of 0.88 (95% CI, 0.81-0.96), significantly better than the use of SpHb (P = 0.00084) and laboratory Hb (P = 0.0068).ConclusionsSpHb added no benefit over conventional oximetry to predict urgent pRBC transfusion for trauma patients. Both models containing POA laboratory test features performed better at predicting pRBC use than prehospital SI, the current best noninvasive vital signs transfusion predictor.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…