• Acta neurochirurgica · Nov 2011

    Case Reports

    Enhanced analysis of intracerebral arterioveneous malformations by the intraoperative use of analytical indocyanine green videoangiography: technical note.

    • Florian Faber, Niklas Thon, Gunther Fesl, Walter Rachinger, Roland Guckler, Jörg-Christian Tonn, and Christian Schichor.
    • Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany. florian.faber@web.de
    • Acta Neurochir (Wien). 2011 Nov 1;153(11):2181-7.

    AbstractIn cerebral arterioveneous malformations (AVMs) detailed intraoperative identification of feeding arteries, nidal vessels and draining veins is crucial for surgery. Intraoperative imaging techniques like indocyanine green videoangiography (ICG-VAG) provide information about vessel architecture and patency, but do not allow time-dependent analysis of intravascular blood flow. Here we report on our first experiences with analytical indocyanine green videoangiography (aICG-VAG) using FLOW 800 software as a useful tool for assessing the time-dependent intraoperative blood flow during surgical removal of cerebral AVMs. Microsope-integrated colour-encoded aICG-VAG was used for the surgical treatment of a 38-year-old woman diagnosed with an incidental AVM, Spetzler Martin grade I, of the left frontal lobe and of a 26-year-old man suffering from seizures caused by a symptomatic AVM, Spetzler Martin grade III, of the right temporal lobe. Analytical ICG-VAG visualization was intraoperatively correlated with in situ micro-Doppler investigation, as well as preoperative and postoperative digital subtraction angiography (DSA). Analytical ICG-VAG is fast, easy to handle and integrates intuitively into surgical procedures. It allows colour-encoded visualization of blood flow distribution with high temporal and spatial resolution. Superficial major and minor feeding arteries can be clearly separated from the nidus and draining veins. Effects of stepwise vessel obliteration on velocity and direction of AVM blood flow can be objectified. High quality of visualization, however, is limited to the site of surgery. Colour-encoded aICG-VAG with FLOW 800 enables intraoperative real-time analysis of arterial and venous vessel architecture and might, therefore, increase efficacy and safety of neurovascular surgery in a selected subset of superficial AVMs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…