• Sleep medicine reviews · Oct 2010

    Review

    The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.

    • Jaime M Monti.
    • Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, Montevideo, Uruguay. jmonti@mednet.org.uy
    • Sleep Med Rev. 2010 Oct 1;14(5):319-27.

    AbstractBased on electrophysiological, neurochemical, genetic and neuropharmacological approaches it is currently accepted that serotonin (5-HT) functions to promote waking (W) and to inhibit rapid-eye movement sleep (REMS). The serotonin-containing neurons of the dorsal raphe nucleus (DRN) provide part of the serotonergic innervation of the telencephalon, diencephalon, mesencephalon and rhombencephalon of laboratory animals and man. The DRN has been subdivided into several clusters on the basis of differences in cellular morphology, expression of other neurotransmitters and afferent and efferent connections. These differences among subpopulations of 5-HT neurons may have important implications for neural mechanisms underlying 5-HT modulation of sleep and waking. The DRN contains 5-HT and non-5-HT neurons. The latter express a variety of substances including dopamine, γ-aminobutyric acid (GABA) and glutamate. In addition, nitric oxide and a number of neuropeptides have been characterized in the DRN. Available evidence tends to indicate that non-5-HT cells contribute to the regulation of the activity of 5-HT neurons during the sleep-wake cycle through local circuits and/or their mediation of the effects of afferent inputs. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type couterparts. 5-HT(2A) and 5-HT(2C) receptor knockout mice show a significant increase of W and a reduction of slow wave sleep that is related, at least in part, to the increased release of norepinephrine and dopamine. A normal circadian sleep pattern is observed in 5-HT(7) receptor knockout mice; however, the mutants spend less time in REMS. Local microinjection of 5-HT(1B), 5-HT(2A/2C), 5-HT(3) and 5-HT(7) receptor agonists into the DRN selectively suppresses REMS in the rat. In contrast, microinjection of 5-HT(1A) receptor agonists promotes REMS. Similarly, local administration of the melanin-concentrating hormone or the GABA(A) receptor agonist muscimol produces an increase of REMS in the rat. Presently, there are no data on the effect of local infusion into the DRN of noradrenergic, dopaminergic, histaminergic, orexinergic and cholinergic agonists on sleep variables in laboratory animals.Copyright © 2009 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…