• IEEE Trans Rehabil Eng · Jun 1998

    Arm-free paraplegic standing--Part I: Control model synthesis and simulation.

    • Z Matjacić and T Bajd.
    • Faculty of Electrical Engineering, University of Ljubljana, Slovenia.
    • IEEE Trans Rehabil Eng. 1998 Jun 1;6(2):125-38.

    AbstractThe following paper is the first part of our investigation into the feasibility of arm-free paraplegic standing. A novel control strategy for unsupported paraplegic standing which utilizes the residual sensory and motor abilities of the thoracic spinal cord injured subjects is proposed. The strategy is based on voluntary and reflex activity of the paraplegic person's upper body and artificially controlled stiffness in the ankles. The knees and hips are maintained in an extended position by functional electrical stimulation (FES). The analysis of a linearized double inverted pendulum model revealed that with properly selected ankle stiffness the system can be easily stabilized. We developed a closed-loop double inverted pendulum model including a neural system delay, trunk muscles dynamics, body segmental dynamics and linear quadratic regulator (LQR) optimal controller. Through simulations of the closed-loop model two different strategies for disturbance rejection were explained. We investigated the capability of the closed-loop model to reject disturbances, imposed at the ankle joint (in anterior and posterior directions) for various stiffness levels and neural system delays in the presence of biomechanical constraints. By limiting permissible excursions of the center of pressure, we found out that the length of the foot is the most important constraint, while the strength of the trunk muscles is not of major importance for successful balancing. An ankle stiffness of approximately 10 Nm/degree suffices for arm-free standing of paraplegic subjects.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.