• Bmc Genomics · Jan 2006

    Comparative Study

    Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes.

    • Michal Korostynski, Dorota Kaminska-Chowaniec, Marcin Piechota, and Ryszard Przewlocki.
    • Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Cracow, Poland. michkor@if-pan.krakow.pl
    • Bmc Genomics. 2006 Jan 1;7:146.

    BackgroundMouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action.ResultsGene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q < 0.01) revealed inter-strain variation in the expression of ~3% of the analyzed transcripts. A combination of three methods of array pre-processing was used to compile a list of ranked transcripts covered by 1528 probe-sets significantly different between the mouse strains under comparison. Using Gene Ontology analysis, over-represented patterns of genes associated with cytoskeleton and involved in synaptic transmission were identified. Differential expression of several genes with relevant neurobiological function (e.g. GABA-A receptor alpha subunits) was validated by quantitative RT-PCR. Analysis of correlations between gene expression and behavioural data revealed connection between the level of mRNA for K homology domain containing, RNA binding, signal transduction associated 1 (Khdrbs1) and ATPase Na+/K+ alpha2 subunit (Atp1a2) with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt) gene.ConclusionThe presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.