-
- Simona Agostini, Helene Eutamene, Christel Cartier, Maria Broccardo, Giovanna Improta, Eric Houdeau, Carla Petrella, Laurent Ferrier, Vassillia Theodorou, and Lionel Bueno.
- INRA, EI-Purpan, UMR 1054 Neuro-Gastroenterology and Nutrition, Toulouse, France.
- Gastroenterology. 2010 Aug 1;139(2):553-63, 563.e1-5.
Background & AimsNarcotic bowel syndrome (NBS) is a subset of opioid bowel dysfunctions that results from prolonged treatment with narcotics and is characterized by chronic abdominal pain. NBS is under-recognized and its molecular mechanisms are unknown. We aimed to (1) develop a rat model of NBS and (2) to investigate its peripheral and central neurobiological mechanisms.MethodsMale Wistar rats were given a slow-release emulsion that did or did not contain morphine (10 mg/kg) for 8 days. Visceral sensitivity to colorectal distension (CRD) was evaluated during and after multiple administrations of morphine or vehicle (controls). The effects of minocycline (a microglia inhibitor), nor-binaltorphimine (a kappa-opioid antagonist), and doxantrazole (a mast-cell inhibitor) were observed on morphine-induced visceral hyperalgesia. Levels of OX-42, P-p38 mitogen-activated protein kinase, rat mast cell protease II, and protein gene product 9.5 were assessed at different spinal segments (lumbar 6 to sacral 1) or colonic mucosa by immunohistochemistry.ResultsOn day 8 of morphine administration, rats developed visceral hyperalgesia to CRD (incipient response) that lasted for 8 more days (delayed response). Minocycline reduced the incipient morphine-induced hypersensitivity response to CRD whereas nor-binaltorphimine and doxantrazole antagonized the delayed hyperalgesia. Levels of OX-42 and P-p38 increased in the spinal sections, whereas rat mast cell protease II and protein gene product 9.5 increased in the colonic mucosa of rats that were given morphine compared with controls.ConclusionsWe developed a rat model of narcotic bowel-like syndrome and showed that spinal microglia activation mediates the development of morphine-induced visceral hyperalgesia; peripheral neuroimmune activation and spinal dynorphin release represent an important mechanism in the delayed and long-lasting morphine-induced colonic hypersensitivity response to CRD.Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.