• Acad Emerg Med · Aug 2013

    Automated outcome classification of emergency department computed tomography imaging reports.

    • Kabir Yadav, Efsun Sarioglu, Meaghan Smith, and Hyeong-Ah Choi.
    • Department of Emergency Medicine, The George Washington University, Washington, DC.
    • Acad Emerg Med. 2013 Aug 1; 20 (8): 848-54.

    BackgroundReliably abstracting outcomes from free-text electronic health records remains a challenge. While automated classification of free text has been a popular medical informatics topic, performance validation using real-world clinical data has been limited. The two main approaches are linguistic (natural language processing [NLP]) and statistical (machine learning). The authors have developed a hybrid system for abstracting computed tomography (CT) reports for specified outcomes.ObjectivesThe objective was to measure performance of a hybrid NLP and machine learning system for automated outcome classification of emergency department (ED) CT imaging reports. The hypothesis was that such a system is comparable to medical personnel doing the data abstraction.MethodsA secondary analysis was performed on a prior diagnostic imaging study on 3,710 blunt facial trauma victims. Staff radiologists dictated CT reports as free text, which were then deidentified. A trained data abstractor manually coded the reference standard outcome of acute orbital fracture, with a random subset double-coded for reliability. The data set was randomly split evenly into training and testing sets. Training patient reports were used as input to the Medical Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms and modifiers for certainty and temporal status. Findings were filtered for low certainty and past/future modifiers and then combined with the manual reference standard to generate decision tree classifiers using data mining tools Waikato Environment for Knowledge Analysis (WEKA) 3.7.5 and Salford Predictive Miner 6.6. Performance of decision tree classifiers was evaluated on the testing set with or without NLP processing.ResultsThe performance of machine learning alone was comparable to prior NLP studies (sensitivity = 0.92, specificity = 0.93, precision = 0.95, recall = 0.93, f-score = 0.94), and the combined use of NLP and machine learning showed further improvement (sensitivity = 0.93, specificity = 0.97, precision = 0.97, recall = 0.96, f-score = 0.97). This performance is similar to, or better than, that of medical personnel in previous studies.ConclusionsA hybrid NLP and machine learning automated classification system shows promise in coding free-text electronic clinical data.© 2013 by the Society for Academic Emergency Medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…